School of Medicine
Showing 1-10 of 35 Results
-
James Hallenbeck, MD
Associate Professor of Medicine (Primary Care and Population Health) at the Palo Alto Veterans Affairs Health Care System, Emeritus
Current Research and Scholarly InterestsResearch in hospice and palliative care with emphases on physician education, cultural aspects of end-of-life care, and healthcare system issues.
-
Bonnie Halpern-Felsher
Marron and Mary Elizabeth Kendrick Professor of Pediatrics and Professor, by courtesy, of Epidemiology and Population Health and of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsResearch focuses on developmental, cognitive and psychosocial factors involved in adolescents’ and young adults’ health-related decision-making, perceptions of risk and vulnerability, health communication and risk behavior. My research has focused on understanding and reducing health risk behaviors such as tobacco use, alcohol and marijuana use, risky driving, and risky sexual behavior.
-
Summer Han
Associate Professor (Research) of Neurosurgery, of Medicine (Biomedical Informatics) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsMy current research focuses on understanding the genetic and environmental etiology of complex disease and developing and evaluating efficient screening strategies based on etiological understanding. The areas of my research interests include statistical genetics, molecular epidemiology, cancer screening, health policy modeling, and risk prediction modeling. I have developed various statistical methods to analyze high-dimensional data to identify genetic and environmental risk factors and their interactions for complex disease.
-
Philip C. Hanawalt
Dr. Morris Herzstein Professor in Biology, Emeritus
Current Research and Scholarly InterestsMy current interest includes two principal areas:
1. The molecular basis for diseases in which the pathway of transcription-coupled DNA repair is defective, including Cockyne syndrome (CS) and UV-sensitive syndrome (UVSS). Patients are severely sensitive to sunlight but get no cancers. See Hanawalt & Spivak, 2008, for review.
2. Transcription arrest by guanine-rich DNA sequences and non-canonical secondary structures. Transcription collisions with replication forks. -
Sigurdis Haraldsdottir
Member, Stanford Cancer Institute
BioDr. Sigurdis Haraldsdottir, M.D., Ph.D. is an Assistant Professor of Medicine at Stanford University School of Medicine. She received her medical degree and master's degree in medical sciences from the University of Iceland. She did her Internal Medicine training at Boston University Medical Center and training in Medical Oncology at the Ohio State University, before joining the faculty at Stanford. Her clinical and research focus is in gastrointestinal malignancies with a focus on mismatch repair deficient cancers, particularly colorectal cancer. She is conducting population-based research on Lynch syndrome - an inherited cancer syndrome, and recently completed a nation-wide study on Lynch syndrome in Iceland. She received her Ph.D. in Medical Sciences in 2017 from the University of Iceland. Her interests also focus on investigating colorectal cancer genomics, and their effect on outcomes and treatment implications.
-
Pehr Harbury
Associate Professor of Biochemistry
Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.
-
Brian A. Hargreaves
Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering
Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications and augmented reality applications in medicine. These include abdominal, breast and musculoskeletal imaging, which require development of faster, quantitative, and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools and augmented reality in medicine.