School of Medicine


Showing 21-30 of 35 Results

  • William Hiesinger, MD

    William Hiesinger, MD

    Associate Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    BioDr. Hiesinger is a board-certified, fellowship-trained specialist in adult cardiac surgery. He is also an assistant professor in the Department of Cardiothoracic Surgery at Stanford University School of Medicine.

    Dr. Hiesinger’s clinical focus encompasses the full spectrum of cardiothoracic conditions and treatment approaches, such as heart transplantation, mitral and aortic valve repair, surgical treatment for hypertrophic cardiomyopathy, coronary artery bypass, and complex thoracic aortic procedures. He serves as Surgical Director of the Stanford Mechanical Circulatory Support Program, where he leads and directs the surgical implantation of ventricular assist devices (VADs) in patients with end-stage heart failure.

    The National Institutes of Health and the Thoracic Surgery Foundation have awarded funds to support Dr. Hiesinger’s research. In the Stanford Cardiothoracic Therapeutics and Surgery Laboratory, Dr. Hiesinger's research spans the disciplines of computer science and cardiovascular biology, and he endeavors to build novel foundational deep learning systems designed to better represent and process high-dimensional inputs and apply these systems towards clinical problems. Additionally, his lab investigates bioengineered devices, tissue engineering, and angiogenic cytokine therapy for the treatment of heart failure.

    He has published extensively and his work has appeared in Nature Communications, Nature Machine Intelligence, the Journal of Heart and Lung Transplantation, Circulation Heart Failure, the Journal of Thoracic and Cardiovascular Surgery, Journal of Vascular Surgery, and elsewhere.

    He teaches courses on cardiothoracic surgery skills. He also advises surgeons of the future.

    Dr. Hiesinger has won awards for his research and scholarship, including the Surgical Resident of the Year Award, Jonathan E. Rhoads Research Award, Clyde F. Baker Research Prize, and I.S. Ravdin Prize, all from his alma mater, the University of Pennsylvania. He was a finalist for the Vivien Thomas Young Investigator Award from the American Heart Association.

    Dr. Hiesinger is a member of the American Association For Thoracic Surgery and serves on the Cardiac Surgery Biology Club. He is also a member of the Society of Thoracic Surgeons and serves on the Workforce on Surgical Treatment of End-Stage Cardiopulmonary Disease national committee as well as the American Heart Association Council for Cardiothoracic and Vascular Surgery.

  • Karen G. Hirsch, MD

    Karen G. Hirsch, MD

    Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsDr. Karen G. Hirsch cares for critically ill patients with neurologic disorders in the intensive care unit. Dr. Hirsch's research focuses on using continuous and discrete multi-modal data to develop phenotypes and identify signatures of treatment responsiveness in patients with coma after cardiac arrest. She is the Co-PI of PRECICECAP (PRecision Care In Cardiac ArrEst - ICECAP, NINDS R01 NS119825-01) and works closely with collaborators in data science at Stanford and with industry partners to apply machine learning analyses to the complex multi-modal ICU data. Dr. Hirsch also studies neuro-imaging in post-cardiac arrest coma and traumatic brain injury.

    Additional research interests include a broad array of topics and Dr. Hirsch greatly appreciates the importance of team science and collaboration. Along with colleagues in Biomedical Ethics, Dr. Hirsch studies brain death and organ donation with a focus on ethical challenges and prediction models. Along with colleagues in Cardiac Anesthesia and Cardiothoracic Surgery, Dr. Hirsch studies neurologic outcomes in patients on mechanical circulatory support including ECMO.

    Dr. Hirsch is broadly interested in improving neurologic outcomes after acute brain injury and identifying early phenotypes to guide precision medicine in neurocritical care, especially in patients with post-cardiac arrest brain injury.

  • Mark Hlatky, MD

    Mark Hlatky, MD

    Professor of Health Policy, of Medicine (Cardiovascular Medicine) and, by courtesy, of Epidemiology and Population Health
    On Partial Leave from 09/01/2023 To 08/31/2024

    Current Research and Scholarly InterestsMy main research work is in "outcomes research", especially examining the field of cardiovascular medicine. Particular areas of interest are the integration of economic and quality of life data into randomized clinical trials, evidence-based medicine, decision models, and cost-effectiveness analysis. I am also interested in the application of novel genetic, biomarker, and imaging tests to assess risk and guide clinical management of coronary artery disease.

  • Rachel Knight Hopper

    Rachel Knight Hopper

    Clinical Associate Professor, Pediatrics - Cardiology

    Current Research and Scholarly InterestsCurrent research interests include:
    PH related to prematurity and bronchopulmonary dysplasia
    Right heart failure in children with pulmonary hypertension, imaging and biomarkers
    Pulmonary hypertension in children with congenital heart disease and/or heart failure
    Clinical trials in children with PH

  • Benjamin Davies Horne

    Benjamin Davies Horne

    Adjunct Clinical Associate Professor, Medicine - Cardiovascular Medicine

    BioDr. Benjamin Horne is an Adjunct Clinical Associate Professor who is based at the Intermountain Medical Center Heart Institute in Salt Lake City, UT, where he serves as the Director of Cardiovascular and Genetic Epidemiology. His doctoral training (PhD) in genetic epidemiology was completed at the University of Utah and he holds masters degrees in public health and in biostatistics. Dr. Horne is a fellow of the American Heart Association, a fellow of the American College of Cardiology, and a member of the American Society of Human Genetics. Dr. Horne’s research focuses on population health and precision medicine, including evaluating the genetic epidemiology of heart diseases, developing and implementing clinical decision tools for personalizing medical care, discovering the human health effects of intermittent fasting, and studying the influences of air pollution on major adverse health events.