School of Medicine


Showing 1-4 of 4 Results

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor in Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    Professor of Developmental Biology and, by courtesy, of Medicine (Endocrinology)

    Current Research and Scholarly InterestsWe study the genetics of pancreatic islet cell differentiation using molecular, embryologic and genetic methods in several model systems, including mice, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. Our knowledge of genetic and cellular pathways governing islet formation has allowed us to use stem cell lines to produce islet replacements in vitro.

  • Mark Krasnow

    Mark Krasnow

    Professor of Biochemistry

    Current Research and Scholarly Interests- Lung development and stem cells
    - Neural circuits of breathing and speaking
    - Lung diseases including lung cancer
    - New genetic model organism for biology, behavior, health and conservation

  • Calvin Kuo

    Calvin Kuo

    Maureen Lyles D'Ambrogio Professor

    Current Research and Scholarly InterestsWe study cancer biology, intestinal stem cells (ISC), and angiogenesis. We use primary organoid cultures of diverse tissues and tumor biopsies for immunotherapy modeling, oncogene functional screening and stem cell biology. Angiogenesis projects include blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. ISC projects apply organoid culture and ko mice to injury-inducible vs homeostatic stem cells and symmetric division mechanisms.