School of Medicine
Showing 21-40 of 66 Results
-
John Kerner
Professor of Pediatrics (Gastroenterology), Emeritus
Current Research and Scholarly InterestsI am interested in pediatric nutritional support and have experience evaluating new enteral and parenteral products especially for the neonate (I studied a "new" I.V. fat product for Abbott; I participated in a multicenter trial of a formula with fish oil in it for neonates with Mead Johnson and a multicenter trial of a new human milk fortifier for Wyeth).
-
Michelle Joanne Khan, MD, MPH, FACOG (she/her)
Clinical Associate Professor, Obstetrics & Gynecology - General
Current Research and Scholarly InterestsDr. Khan's research focuses on prevention of HPV-related cancers of the cervix, vagina, vulva, and anus and on the impact of reproductive tract infections on pregnancy and health.
-
Kajal Khanna
Clinical Associate Professor, Emergency Medicine
Clinical Associate Professor (By courtesy), PediatricsCurrent Research and Scholarly InterestsGlobal pediatric emergency medicine research, educational scholarship, pediatric emergency medical care in low- and middle- income countries and rights-based approaches to health systems development
-
Nasim Sabery Khavari
Clinical Associate Professor, Pediatrics - Gastroenterology
Current Research and Scholarly InterestsPediatric Gastroenterology, Celiac Disease, Nutrition in Celiac Disease
-
Paul A. Khavari, MD, PhD
Carl J. Herzog Professor of Dermatology in the School of Medicine
Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Peter S. Kim
Virginia and D. K. Ludwig Professor of Biochemistry
Current Research and Scholarly InterestsOur research focuses on developing new strategies for vaccine creation. We also aim to generate vaccines targeting infectious agents that have eluded efforts to date. We integrate experimental approaches with protein language models to guide artificial evolution and enable efficient antibody and protein engineering. Our interdisciplinary approach aims to address critical global health challenges.
-
Seung K. Kim M.D., Ph.D.
KM Mulberry Professor, Professor of Developmental Biology, of Medicine (Endocrinology) and, by courtesy, of Pediatrics (Endocrinology)
Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.