School of Medicine


Showing 1-10 of 17 Results

  • Seema Nagpal, MD

    Seema Nagpal, MD

    Clinical Associate Professor, Neurology & Neurological Sciences
    Clinical Associate Professor (By courtesy), Neurosurgery

    Current Research and Scholarly InterestsI'm a board certified neuro-oncologist who treats both primary brain tumors as well as metastatic disease to the brain and nervous system. My research concentrates on clinical trials for patients with late-stage central nervous system cancer. I have a special interest in leptomeningeal disease, a devastating complication of lung and breast cancers. I collaborate with Stanford scientists to detect this disease earlier, and with our breast and lung oncologists to improve outcomes for patients.

  • Hiromitsu (Hiro) Nakauchi

    Hiromitsu (Hiro) Nakauchi

    Professor of Genetics (Stem Cell)

    Current Research and Scholarly InterestsTranslation of discoveries in basic research into practical medical applications

  • Yusuke Nakauchi

    Yusuke Nakauchi

    Instructor, Stanford Cancer Institute

    Current Research and Scholarly InterestsFrom 2005 to 2010, my work as a clinical hematology fellow allowed me to experience first-hand how scientific advances that started in a laboratory can transform patients' lives. While many of my patients were cured of their disease with allogeneic hematopoietic stem cell transplantation, underscoring the importance of anti-tumor immunotherapy in eradicating leukemia, I witnessed face-to-face their suffering from the long-term consequence of graft-versus-host disease (GVHD). This experience was ultimately what drove me to engage in research to discover novel therapies. For this reason, I embarked on a Ph.D. program in 2010 to design antibody therapy to (i) target GVHD and (ii) target hematological malignancies. Under the mentorship of Professor Hiromitsu Nakauchi at the University of Tokyo, an international leader in hematopoiesis, I developed allele-specific anti-human leukocyte antigen (HLA) monoclonal antibodies for severe GVHD caused by HLA-mismatched hematopoietic stem cell transplantation (Nakauchi et al., Exp Hematol, 2015). This study was the first to find that anti-HLA antibodies can be used therapeutically against GVHD. That success gave me the motivation and confidence to further my research beyond targeting GVHD to targeting leukemic stem cells through my postdoctoral fellowship in the laboratory of Professor Ravindra Majeti here at Stanford University.

    Many people suffer from leukemia each year, but we still don't know how to cure it completely. Recent advances in sequencing technologies have tremendously improved our understanding of the underlying mutations that drive hematologic malignancies. However, the reality is that most of the mutations are not easily "druggable," and the discovery of these mutations has not yet significantly impacted patient outcomes. This is perhaps the most crucial challenge facing a translational cancer researcher like myself. My current research is a major step toward my long-term goal of making personalized medicine a reality for patients with acute myeloid leukemia (AML) and other hematologic malignancies.

    Since joining the Majeti lab, I have been targeting the ten-eleven translocation methylcytosine dioxygenase-2 (TET2) mutation, which is aberrant in leukemia at a high rate and has been studied using human-derived cells. TET2 is known to be involved in the clonal expansion of cells, and people with this mutation are more likely to suffer from hematologic malignancies. It is also known to be involved in the development of coronary artery disease, a gene that has attracted much attention in recent studies. In my field, it is an essential gene involved in the abnormal proliferation of hematopoietic stem cells. Focusing on this gene, I mapped TET2-dependent 5hmC, epigenetic and transcriptional programs matched to competitive advantage, myeloid skewing, and reduced erythroid output in TET2-deficient hematopoietic stem and progenitor cells (HSPC). Vitamin C and azacitidine restore the 5hmC landscape and phenotypes in TET2-mutant HSPCs. These findings offer a comprehensive resource for TET-dependent transcriptional regulation of human hematopoiesis and shed light on the potential mechanisms by which TET deficiency contributes to clonal hematopoiesis and malignancies. Of course, these findings would also be of value in understanding the biology of normal hematopoietic stem cells (HSCs) and various other TET2-related cancers.

    And from now on, I would like to use the single-cell transplantation techniques mastered in the Majeti lab to study the behavior of normal and aberrant human HSCs using various new methods, ultimately preventing the progression of AML.

    In my clinical experience, I have lost many AML patients. With the regret and sadness of losing these patients in my heart, I hope to one day contribute to developing treatments that will fundamentally change how the world treats leukemia.

  • Sandy Napel

    Sandy Napel

    Professor of Radiology (Integrative Biomedical Imaging Informatics) and, by courtesy, of Medicine (Medical Informatics) and of Electrical Engineering

    Current Research and Scholarly InterestsMy research seeks to advance the clinical and basic sciences in radiology, while improving our understanding of biology and the manifestations of disease, by pioneering methods in the information sciences that integrate imaging, clinical and molecular data. A current focus is on content-based radiological image retrieval and integration of imaging features with clinical and molecular data for diagnostic, prognostic, and therapy planning decision support.

  • Anupama Narla

    Anupama Narla

    Assistant Professor of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsMy research interests are to study the pathophysiology of ribosomopathies and to translate these insights into the work-up and management of pediatric bone marrow failure syndromes.

  • Yasodha Natkunam, M.D., Ph.D

    Yasodha Natkunam, M.D., Ph.D

    Ronald F. Dorfman, MBBch, FRCPath Professor of Hematopathology

    Current Research and Scholarly InterestsMy research interests focus on the identification and characterization of markers of diagnostic and prognostic importance in hematolymphoid neoplasia.

  • Joel Neal, MD, PhD

    Joel Neal, MD, PhD

    Associate Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsI am a thoracic oncologist who cares for patients with non-small cell lung cancer, malignant mesothelioma, and other thoracic malignancies. I design and conduct clinical trials of novel therapies in collaboration with other researchers and pharmaceutical companies. These generally focus on two areas, 1) targeted therapies against particular mutations in cancers (for example EGFR, ALK, ROS1, HER2, KRAS, MET, and others) and 2) the emerging field of immunotherapy in cancer, using anti PD-1/PD-L1 therapies in combination with other agents, and also developing cellular therapies. I also collaborate with other researchers on campus to apply emerging technologies to cancer therapy, for example, circulating tumor DNA detection. Additionally, in my role as the Cancer Center IT Medical Director, I coordinate projects relating to our use of the electronic health record to improve provider efficiency and facilitate patient care.

  • Robert Negrin

    Robert Negrin

    Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    Current Research and Scholarly InterestsOur labaratory focuses on the study of immune recognition by T and NK cells with special emphasis on graft vs host disease and graft vs tumor reactions. We utilize both murine and human systems in an effort to enhance graft vs tumor reactions while controlling graft vs host disease. We have developed bioluminescence models in collaboration with the Contag laboratory to study the trafficking of immune effector cells with a special emphasis on NK, T and regulatory T cells.

  • William Nelson

    William Nelson

    Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsOur research objectives are to understand the cellular mechanisms involved in the development and maintenance of epithelial cell polarity. Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs.