School of Medicine
Showing 1-5 of 5 Results
-
Donna Peehl, PhD
Professor (Research) of Urology, Emerita
Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.
-
Dmitri Petrov
Michelle and Kevin Douglas Professor in the School of Humanities and Sciences
Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation
-
Suzanne Pfeffer
Emma Pfeiffer Merner Professor of Medical Sciences
Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.
-
Jonathan Pollack
Professor of Pathology
Current Research and Scholarly InterestsResearch in the Pollack lab centers on translational genomics, with a focus on prostate diseases. The lab employs next-generation sequencing, single-cell and spatial genomics, gene editing, and human cell/tissue-based modeling to uncover disease mechanisms, biomarkers and therapeutic targets. Current areas of emphasis include benign prostatic hyperplasia, prostate cancer, and rare/neglected cancer types (ameloblastoma, liposarcoma).
-
Matthew Porteus
Sutardja Chuk Professor of Definitive and Curative Medicine
BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.