School of Medicine
Showing 1-27 of 27 Results
-
Julien Sage
Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.
-
Serena Sanulli
Assistant Professor of Genetics
Current Research and Scholarly InterestsWe study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function.
-
Gavin Sherlock
Professor of Genetics
Current Research and Scholarly InterestsEvolution and the adaptive landscape using yeast as a model; Defining yeast transcriptomes; chromosomal evolution in hybrid yeast species
-
Jou-Ho Shih
Postdoctoral Scholar, Genetics
Bio2011 B.S., Life Science, National Tsing Hwa University, Taiwan
2019 Ph.D., Genome and Systems Biology Degree Program, National Taiwan University, Taiwan; Advisor: Dr. Yuh-Shan Jou
2019-2020 Postdoctoral Fellow, Biomedical Science, Academia Sinica, Taiwan; Advisor: Dr. Yuh-Shan Jou
2020-present Postdoctoral Fellow, Dept. Genetics, Stanford University, CA; Advisor: Dr. Michael Snyder -
Mahasish Shome
Postdoctoral Scholar, Genetics
BioI am a postdoctoral fellow in Department of Genetics working in Dr. Michael Snyder’s lab. My research interest revolves around studying humoral immunity to understand disease pathology. I am currently working on Postacute sequelae of SARS-CoV-2 infection (PASC) patients who experienced various symptoms after COVID infection and vaccination. We looked into the antibody profile of this cohort and also the B cell receptor (BCR) repertoire for possible clonal expansion. We are specifically trying to understand if there is an autoimmune component leading to these symptoms observed in PASC cohort. We also plan to decipher the reason behind some individuals having symptoms after vaccination while others do not.
I am also interested in inflammatory bowel disease pathology and how gut microbiome plays a role in disease progression. I am focusing on Adherent Invasive Escherichia Coli as a pathobiont microbe target. -
Arend Sidow
Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWe have a highly collaborative research program in the evolutionary genomics of cancer. We apply well-established principles of phylogenetics to cancer evolution on the basis of whole genome sequencing and functional genomics data of multiple tumor samples from the same patient. Introductions to our work and the concepts we apply are best found in the Newburger et al paper in Genome Research and the Sidow and Spies review in TIGS.
More information can be found here: http://www.sidowlab.org -
Michael Snyder, Ph.D.
Stanford W. Ascherman Professor of Genetics
Current Research and Scholarly InterestsOur laboratory use different omics approaches to study a) regulatory networks, b) intra- and inter-species variation which differs primarily at the level of regulatory information c) human health and disease. For the later we have established integrated Personal Omics Profiling (iPOP), an analysis that combines longitudinal analyses of genomic, transcriptomic, proteomic, metabolomic, DNA methylation, microbiome and autoantibody profiles to monitor healthy and disease states
-
Lars Steinmetz
Dieter Schwarz Foundation Endowed Professor and Professor of Genetics
Current Research and Scholarly InterestsWe apply diverse genomic approaches to understand how genetic variation affects health and disease by: 1) functional and mechanistic analyses of gene regulation, 2) studies of meiotic recombination and inheritance, 3) analyses of genetic and environmental interactions, and 4) characterization of diseases in human cells and model organisms. We integrate wet lab and computational genomic, transcriptomic, proteomic and metabolic approaches, and develop technologies to enable personalized medicine.
-
Han Sun
Postdoctoral Scholar, Genetics
Biostatistician 2, Pediatrics - EndocrinologyBioHan had been a postdoc with Dr. Steinmetz at the genetics department for five years, working on both cancers and heart diseases, trying to understand the mechanisms linking from variants to disease phenotypes. This led to a few very interesting findings of aberrant splicing regulation, such as splicing-mediated readthrough stabilization (SRS), one more mechanism for oncogene activation in multiple types of cancers, and tissue-specific splicing of a mitochondrial inner membrane protein, suggesting a molecular connection between deficiency in energy-supplying and dilated cardiomyopathy.
After being a senior computational biologist with Dr. Gloyn, who has been dedicated to the research of type 2 diabetes for decades, Han switched to the field of this multifactorial metabolic disease. It did take some courage to make such a switch at his post-postdoc stage, however, Han has a consistent interest in studying PG&E, which is not pacific gas and electric nearby, but the interaction between phenotype, genotype, and environment. With years of hands-on experience in statistical modeling and the analysis of next-generation sequencing and mass spectrometry data, in addition to a good understanding of disease genetics, cancer biology, and systems biology, Han is highly confident that he will enjoy the adventure and contribute to our understanding of diabetes.