School of Medicine
Showing 1-10 of 10 Results
-
Paul J. Wang, MD
John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang is committed to addressing disparities in care and is actively involved in increasing diversity in clinical trials.
-
Chad S. Weldy, M.D., Ph.D.
Instructor, Medicine - Cardiovascular Medicine
Current Research and Scholarly InterestsAs a physician-scientist in the lab of Dr. Quertermous I work to understand the genetic basis of cardiovascular disease and the transcriptional and epigenomic mechanisms of atherosclerosis. My work is focused across four main areas of cardiovascular genetics and mechanisms of coronary artery disease and smooth muscle biology:
1.Vascular smooth muscle specific ADAR1 mediated RNA editing of double stranded RNA and activation of the double stranded RNA receptor MDA5
2.Defining on single cell resolution the cellular and epigenomic features of human vascular disease across vascular beds of differing embryonic origin
3.CRISPRi screening with targeted perturb seq (TAPseq) to identify novel CAD genes in human coronary artery smooth muscle cells
4.Investigation of the epigenetic and molecular basis of coronary artery disease and smooth muscle cell transition in mice with conditional smooth muscle genetic deletion of CAD genes Pdgfd and Sox9
My work with Dr. Quertermous is focused on discovery of causal mechanisms of disease through leveraging human genetics with sophisticated molecular biology, single cell sequencing technologies, and mouse models of disease. This work attempts to apply multiple scientific research arms to ultimately lead to novel understandings of vascular disease and discover important new therapeutic approaches for drug discovery.
Grant funding received for this work:
Mentored Clinical Scientist Research Career Development Award (K08)(NIH/NHLBI, 1 K08 HL167699-01), Submitted June, 2022. PI: Weldy, Chad
•Title of proposal: “ADAR Mediated RNA editing is a causal mechanism in coronary artery disease”.
•Pending 08/01/2023 Start date
•$850,000 over 5 years
Career Development Award, American Heart Association (AHA CDA)(23CDA1042900), July, 2023 – June, 2026. PI: Weldy, Chad
•Title of proposal: “Linking RNA editing to coronary artery calcification and disease”
•Activation on 07/01/2023
•$231,000 over three years
NIH Loan Repayment Program (LRP) Award (NIH/NHLBI) Renewal Award, July, 2023. PI: Weldy, Chad
•Title of proposal: “RNA editing is a causal mechanism of coronary artery disease”
Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (F32) (NIH/NHLBI, 1 F32 HL160067-01), July, 2021. PI: Weldy, Chad
• Titled, “A transcriptional network which governs smooth muscle transition is mediated by causal coronary artery disease gene PDGFD”
•*Received perfect score with impact score 10, 1st percentile
NIH Loan Repayment Program (LRP) Award (NIH/NHLBI), July, 2021. PI: Weldy, Chad
•Title of proposal: "Single cell transcriptomic and epigenomic features of human atherosclerosis".
•This will award up to $100,000 towards student loans over the next 24 months with opportunity for renewal after 24 months. -
Matthew Wheeler
Associate Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.
-
Ronald Witteles
Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly Interests1) Amyloidosis -- Optimizing diagnosis/therapy and discovering new treatments
2) CardioOncology -- Understanding, treating, and preventing cancer therapy-induced cardiotoxicity
3) Sarcoidosis -- Exploring novel diagnostic modalities and determining optimal treatment, with a focus on cardiac sarcoidosis -
Jennifer Woo, MD
Clinical Assistant Professor, Medicine - Cardiovascular Medicine
Clinical Assistant Professor, Pediatrics - CardiologyBioDr. Woo is a board-certified, fellowship-trained cardiologist with the Adult Congenital Heart Program at Stanford Health Care. She is also a clinical assistant professor in the Divisions of Cardiovascular Medicine and Pediatric Cardiology at Stanford University School of Medicine.
She diagnoses and treats a range of cardiovascular diseases, with a focus on adult congenital heart disease. Dr. Woo has Level III training with the National Board of Echocardiography, a certification that recognizes her experience in complex cardiac imaging. She also has specialized expertise in cardiac MRI. Each of her patients receives a personalized, comprehensive care plan delivered with compassion.
Dr. Woo is heavily involved in adult congenital heart disease research. She has a particular interest in imaging and heart failure in adults with congenital heart disease. She has received grant funding for her work, including from the Adult Congenital Heart Association. The National Institutes of Health awarded granted her the Ruth L. Kirschstein National Research Service Award.
She has published research in several peer-reviewed journals, such as the Journal of the American College of Cardiology and Pediatric Cardiology. Dr. Woo has presented her findings at regional and national meetings, including the Adult Congenital Heart Disease Bay Area Conference and the International Symposium on Adult Congenital Heart Disease.
Dr. Woo is a member of the Adult Congenital Heart Association, American College of Cardiology, American Heart Association, and American Society of Echocardiography. -
Bryan Wu, MD
Clinical Assistant Professor, Medicine - Cardiovascular Medicine
BioDr. Wu is a board-certified cardiologist at Stanford Health Care. He is also a clinical assistant professor in the Division of Cardiovascular Medicine. His areas of clinical focus include general and preventive cardiology with a particular interest in cardiac imaging. Dr. Wu has board certification in echocardiography, cardiovascular CT, and cardiac nuclear imaging.
Dr. Wu speaks fluent Chinese and Spanish and embraces racial, ethnic, and socioeconomic diversity in his clinical care. He has international clinical/research experiences in Italy and Mexico, and truly enjoys meeting and working with people from distinctive backgrounds.
Dr. Wu is passionate about clinical research. He has pursued scholarly work on the utilization of therapeutic drug monitoring for antihypertensive therapy and statins to help patients from low socioeconomic backgrounds improve their medication adherence. He is also involved in research on advanced cardiac imaging and has actively investigated the applications of cardiac CT in electrophysiology interventions.
Dr. Wu’s research has been published in peer-reviewed journals such as the International Journal of Cardiology and Journal of Vascular Surgery. He has presented his work at regional and national meetings, including the American Heart Association’s annual Scientific Sessions.
Dr. Wu is a member of the American College of Physicians, American Heart Association, and American Medical Association. -
Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.
-
Sean M. Wu
Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsMy lab seeks to identify mechanisms regulating cardiac lineage commitment during embryonic development and the biology of cardiac progenitor cells in development and disease. We believe that by understanding the transcriptional and epigenetic basis of cardiomyocyte growth and differentiation, we can identify the most effective ways to repair diseased adult hearts. We employ mouse and human embryonic and induced pluripotent stem cells as well as rodents as our in vivo models for investigation.