School of Medicine
Showing 1-50 of 50 Results
-
Soichi Wakatsuki
Professor of Photon Science and of Structural Biology
Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.
Protein self-assembly processes and applications.
The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.
Multiscale imaging and technology developments.
Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators. -
Rebecca D. Walker
Clinical Associate Professor, Emergency Medicine
Current Research and Scholarly InterestsInterests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration
-
Dennis Wall
Professor of Pediatrics (Systems Medicine), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease
-
James Wall
Associate Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsHealth Technology Innovation
-
Brian A. Wandell
Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education
Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.
-
C. Jason Wang, MD, PhD
Bowei Lee Professor and Professor of Pediatrics (General Pediatrics) and of Health Policy
BioDr. Wang is the Director of Center for Policy, Outcomes and Prevention. Prior to coming to Stanford in 2011, he was a faculty member at Boston University Schools of Medicine and Public Health. His other professional experiences include working as a management consultant with McKinsey and Company and serving as the project manager for Taiwan's National Health Insurance Reform Task-force. His current interests include: 1) COVID-19 related policies; 2) developing tools for assessing and improving the value of healthcare; 3) facilitating the use of mobile technology in improving quality of care; 4) supporting competency-based medical education curriculum, and 5) engaging in healthcare delivery and payment reforms.
-
Jinglong Wang
Postdoctoral Scholar, Radiation Biology
BioDr. Wang was trained at the Jacques Monod Institute and École Normale Supérieure in Paris, France under the mentorship of Dr. Terence Strick. and obtained his Ph.D. degree from the University of Paris in 2019. He dissected the molecular machinery of human and bacterial NHEJ, and interrogated the mechanism of SpCas9 tolerance to non-specific substrate using single-molecule nanomanipulation tools.
Jinglong’s research in the Frock Lab focuses on DSB-related chromosome topological changes and genomic interactions. -
Kevin Wang, MD, PhD
Assistant Professor of Dermatology
Current Research and Scholarly InterestsThe Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.
-
Marie Wang
Clinical Associate Professor, Pediatrics
Current Research and Scholarly InterestsEvaluation and management of the febrile young infant and infections in hospitalized children; promotion of appropriate antibiotic use.
-
Nancy Ewen Wang
Professor of Emergency Medicine and, by courtesy, of Pediatrics (Hospital Medicine)
Current Research and Scholarly Interests- Disparities in Emergency Medical Services for children.
- Efficacy of novel interventions for pediatric access to care.
- Teaching and supporting community-initiated interventions and programs internationally. -
Paul J. Wang, MD
John R. and Ai Giak L. Singleton Director, Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang has active collaborations with Bioengineering, Mechanical Engineering, and Electrical Engineering Departments at Stanford.
-
Samantha Wang
Clinical Assistant Professor, Medicine
BioSamantha Wang received her Bachelors degree in Molecular & Cell Biology from the University of California, Berkeley, and her MD and Masters in Health Science degrees from Yale University School of Medicine. She completed training in internal medicine residency followed by a chief resident year at Stanford Hospital & Clinics. She led the Women in Internal Medicine Residency Interest Group and was a member of the GME Women in Medicine Leadership Council, where she developed educational programs to develop leadership, wellness, and community among women trainees and allies, and has now continued the work as a faculty liaison. She then joined the Division of Hospital Medicine as faculty to care for acutely ill adult patients. Outside her clinical work, her area of focus is in medical education, specifically clinical skills, patient-centered communication strategies, and health equity; she received the David A. Rytand Teaching Award in recognition of her excellence in clinical teaching. She is the Co-Director for the Clinical Teaching Pathway of Distinction for the Internal Medicine Residency. She was the recipient of a 2021-2022 Teaching & Mentorship Academy educational innovation grant to develop a digitalized curriculum to teach racial justice in clinical decision-making and promote justice, equity, diversity, and inclusion throughout the continuum of medical training. Her research uses quantitative and qualitative methodologies and participatory qualitative approaches with community partners to understand how to effectively teach racial justice in the clinical learning environment.
-
Shan X. Wang
Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
-
Sui Wang, PhD
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsOur research focuses on understanding the molecular mechanisms that underlie retinal development and diseases. We utilize genetic and genomic tools to uncover how different types of retinal cells, including retinal neurons, glia and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels, and how they interact and collectively contribute to the integrity of the retina.
1. Retinal cell fate specification.
We are using genetic tools and methods, such as in vivo plasmid electroporation and CRISPR, to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal cell fate specification.
2. The multicellular responses elicited by diabetes in the retina.
Diabetes can induce multicellular responses in the retina, including vascular lesions, glial dysfunction and neurodegeneration, all of which contribute to retinopathy. We are using diabetic rats as models to investigate the detailed molecular mechanisms underlying the diabetes-induced multicellular responses, and the disease mechanisms of diabetic retinopathy.
3. Molecular tools that allow for cell type-specific labeling and manipulation in vivo.
Cis-regulatory elements, such as enhancers, play essential roles in directing tissue/cell type-specific and stage-specific expression. We are interested in identifying enhancers that can drive cell type-specific expression in the retina and brain, and incorporating them into plasmid or AAV based delivery systems. -
Taia T. Wang, MD, PhD, MSCI
Assistant Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsLaboratory of Mechanisms in Human Immunity and Disease Pathogenesis
Antibodies are a critical component of host defense. While the importance of humoral immunity has been recognized for decades, substantial gaps in knowledge remain around how antibodies function, and how their function is regulated, in vivo. Our laboratory performs studies designed to fill in these gaps, with the goal of enabling new vaccine and therapeutic strategies to prevent human disease. My interest in this area culminated from training in medicine, RNA virus biology (PhD), and molecular antibody biology (postdoctoral training). The intersection of these topics, viral immunity and disease pathogenesis, is the focus of our work. The essential question driving our research is why a small subset of people develop severe or fatal disease during viral infection while most infections result in a subclinical or mild outcome, even in at-risk populations. Our hypothesis is that the antibody signaling pathways that are engaged during viral infection through Fc gamma receptors (FcγRs) are a key driver of these distinct outcomes. We are focused on several major unknowns to address this hypothesis: How are antibody effector functions regulated in vivo and does this change in disease? How do distinct signaling pathways engaged by IgG immune complex-FcγR interactions impact host cell genetic regulation and the ultimate inflammatory/immune response? What are the tissue-specific functions that antibodies engage? How does the heterogeneity in post-translational modifications (PTMs) of human antibodies contribute to heterogeneity in viral immunity?
Current clinical studies:
Recruiting:
An Open Label Study of IgG Fc Glycan Composition in Human Immunity
Principal Investigator: Taia T. Wang, MD, PhD
ClinicalTrials.gov Identifier:
NCT01967238 -
Wenjun Wang
Postdoctoral Scholar, Stem Cell Transplantation
Current Research and Scholarly InterestsMy postdoctoral research focuses on investigating novel therapy for childhood leukemias.
-
Xinnan Wang
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.
-
Victoria Ward
Clinical Associate Professor, Pediatrics
Current Research and Scholarly InterestsGlobal child health, digital health, preterm birth, human trafficking
-
Katja Gabriele Weinacht, MD, PhD
Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)
Current Research and Scholarly InterestsPediatric Hematopoietic Stem Cell Transplantation
DiGeorge Syndrome
Genetic Immune Diseases
Immune Dysregulation -
Alexis Thomas Weiner
Postdoctoral Scholar, Pathology
Current Research and Scholarly InterestsThe planar cell polarity (PCP) signaling pathway polarizes animal cells along an axis parallel to the tissue plane, and in so doing generates long-range organization that can span entire tissues. Although its core proteins and much about their interactions are known, how PCP signaling occurs at a mechanistic level remains fundamentally mysterious. In my current project I will employ novel genetic methods to dissect the logic underlying how cellular asymmetry arises at a molecular level.
-
Dana Weintraub
Clinical Associate Professor, Pediatrics - General Pediatrics
Current Research and Scholarly InterestsResearch interests include: 1) Childhood obesity, community-based interventions to increase physical activity 2) Impact of medical-legal collaboration on child and family health.
-
Irving Weissman
Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology
Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.
-
Marius Wernig
Professor of Pathology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine
-
Matthew Wheeler
Assistant Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.
-
Nolan Williams
Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator) and, by courtesy, of Radiology (Neuroimaging and Neurointervention)
BioDr. Williams is an Associate Professor within the Department of Psychiatry and Behavioral Sciences and the Director of the Stanford Brain Stimulation Lab. Dr. Williams has a broad background in clinical neuroscience and is triple board-certified in general neurology, general psychiatry, as well as behavioral neurology & neuropsychiatry. In addition, he has specific training and clinical expertise in the development of brain stimulation methodologies. Themes of his work include (a) examining the use of spaced learning theory in the application of neurostimulation techniques, (b) development and mechanistic understanding of rapid-acting antidepressants, and (c) identifying objective biomarkers that predict neuromodulation responses in treatment-resistant neuropsychiatric conditions. Dr. Williams' work has resulted in an FDA clearance for the world's first non-invasive, rapid-acting neuromodulation approach for treatment-resistant depression. He has published papers in high-impact peer-reviewed journals including Brain, American Journal of Psychiatry, and the Proceedings of the National Academy of Science. Results from his studies have gained widespread attention in journals such as Science and New England Journal of Medicine Journal Watch as well as in the popular press and have been featured in various news sources including Time, Smithsonian, and Newsweek. Dr. Williams received two NARSAD Young Investigator Awards in 2016 and 2018 along with the 2019 Gerald R. Klerman Award. Dr. Williams received the National Institute of Mental Health Biobehavioral Research Award for Innovative New Scientists in 2020.
-
Darrell Wilson
Professor of Pediatrics (Endocrinology) at the Lucile Salter Packard Children's Hospital, Emeritus
Current Research and Scholarly InterestsMy research interests cover a number of areas in Pediatric Endocrinology and Diabetes. I am PI of the Stanford Center for the NIH-funded Type-1 Diabetes TrialNet group. TrialNet conducts clinical trials directed at preventing or delaying the onset of Type 1 diabetes. I am an investigator in DirecNet, another NIH-funded study group, which is devoted to evaluating glucose sensors and the role of technology on the management of diabetes.
-
Helen Wilson
Clinical Professor, Psychiatry and Behavioral Sciences
BioDr. Wilson is a licensed clinical psychologist with expertise on the effects of trauma across the lifespan. She provides clinical services for children, adolescents, adults, and families affected by trauma and other forms of anxiety and stress. Dr. Wilson also leads an active research program focused on relationships between childhood trauma and health risk behavior in adolescence and adulthood. She is the Principal Investigator of GIRLTALK: We Talk, a longitudinal study funded by the National Institute of Child Health and Human Development (NICHD) that examines links from childhood violence exposure to dating violence and sexual risk in young women from low-income communities in Chicago. Dr. Wilson has authored or co-authored thirty journal articles and book chapters related to these topics, and she regularly presents her work at local and national conferences. She is on the editorial board of the Journal of Youth and Adolescence.
-
Jeffrey J. Wine
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsThe goal is to understand how a defective ion channel leads to the human genetic disease cystic fibrosis. Studies of ion channels and ion transport involved in gland fluid transport. Methods include SSCP mutation detection and DNA sequencing, protein analysis, patch-clamp recording, ion-selective microelectrodes, electrophysiological analyses of transmembrane ion flows, isotopic metho
-
Virginia D. Winn, MD, PhD
Associate Professor of Obstetrics and Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly InterestsThe Winn Laboratory seeks to understand the unique biological mechanisms of human placentation. While the placenta itself is one of the key characteristics for defining mammals, the human placenta is different from most available animal models: it is one of the most invasive placentas, and results in the formation of an organ comprised of cells from both the fetus and the mother. In addition to this fascinating chimerism, fetal cells are deeply involved in the remodeling of the maternal vasculature in order to redirect large volumes of maternal blood to the placenta to support the developing fetus. As such, the investigation of this human organ covers a large array of biological processes, and deals not only with understanding its endocrine function, but the physiologic process of immune tolerance, vascular remodeling, and cellular invasion.
-
Terry Winograd
Professor of Computer Science, Emeritus
BioProfessor Winograd's focus is on human-computer interaction design and the design of technologies for development. He directs the teaching programs and HCI research in the Stanford Human-Computer Interaction Group, which recently celebrated it's 20th anniversary. He is also a founding faculty member of the Hasso Plattner Institute of Design at Stanford (the "d.school") and on the faculty of the Center on Democracy, Development, and the Rule of Law (CDDRL)
Winograd was a founding member and past president of Computer Professionals for Social Responsibility. He is on a number of journal editorial boards, including Human Computer Interaction, ACM Transactions on Computer Human Interaction, and Informatica. He has advised a number of companies started by his students, including Google. In 2011 he received the ACM SIGCHI Lifetime Research Award. -
Paul H. Wise, MD, MPH
Richard E. Behrman, MD, Professor of Child Health and Society and Senior Fellow at the Freeman Spogli Institute for International Studies
Current Research and Scholarly InterestsHe is a health policy and outcomes researcher whose work has focused on children's health; health-outcomes disparities by race, ethnicity and socioeconomic status; the interaction of genetics and the environment as these factors influence child and maternal health; and the impact of medical technology on disparities in health outcomes.
-
Wing Hung Wong
Stephen R. Pierce Family Goldman Sachs Professor of Science and Human Health and Professor of Biomedical Data Science
Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.
-
Mollie Woodworth
Instructor, Ophthalmology
Current Research and Scholarly InterestsMany types of blindness result from the neurons of the retina no longer being able to communicate with the brain due to injury or disease. In mammals, the adult retina cannot make new retinal ganglion cells (the neurons that connect the retina with the brain) to replace those that are lost. In my work, I aim to learn about normal development of retinal ganglion cells and, further, to regenerate new retinal ganglion cells if they are lost in adulthood.
-
John Fraser Wright
Professor (Research) of Pediatrics (Stem Cell Transplantation)
BioJ Fraser Wright, PhD
Dr. Wright received his PhD in 1989 from the University of Toronto (Biochemistry) for studies
characterizing the interaction of complement with IgM, and completed post-doctoral studies at INSERM
/ CENG Grenoble, France in molecular immunology focused on antigen processing and presentation. He
was awarded a CRCS/ MRC Scholarship, gaining faculty appointment at the University of Toronto. In
1996 he joined industry as a Scientist at Pasteur Sanofi, contributing there to the development of
vaccines and cancer immunotherapies, and subsequently as Director of Development and Clinical
Manufacturing at Avigen, a gene therapy company that pioneered AAV-based investigational gene
therapies for hemophilia and Parkinson’s disease. In 2004 he returned to academia, establishing and
directing the Clinical Vector Facility at the Center for Cellular and Molecular Therapeutics at Children’s
Hospital of Philadelphia, and gaining faculty appointment at the University of Pennsylvania Perelman
School of Medicine as professor of Pathology and Laboratory Medicine. Dr. Wright has contributed to
several clinical development programs in gene therapy, including for Luxturna and Kymriah, the first
gene therapies for a genetic (RPE65 deficiency) and non-genetic (CAR-T immunotherapy) disease,
respectively, approved in the United States, and for the first gene therapy clinical trial that delivered an
AAV-vectorized monoclonal antibody to human subjects for HIV passive immunity. He is a Co-founder of
Spark Therapeutics, serving there and subsequently at Axovant as Chief Technology Officer. In 2019 Dr.
Wright joined Stanford University as Professor of Pediatrics at The Center for Definitive and Curative
Medicine (CDCM). His research program aims to address key immunological barriers to gene therapy
through innovative approaches to viral vector design and generation, and to develop vectorized
antibodies for serious human diseases. -
Albert Y. Wu, MD, PhD, FACS
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.
-
Hsi-Yang Wu
Member, Bio-X
Current Research and Scholarly InterestsI am interested in how the brain matures to control the bladder and external sphincter to achieve urinary continence. Using functional MRI of the brain, we are investigating if certain patterns of activity will predict which children will respond to therapy for incontinence.
-
Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.
-
Joy Wu
Associate Professor of Medicine (Endocrinology)
Current Research and Scholarly InterestsMy laboratory focuses on the pathways that regulate the differentiation of mesenchymal stem cells into the osteoblast and adipocyte lineages. We are also studying the role of osteoblasts in the hematopoietic and cancer niches in the bone marrow microenvironment.
-
Sean M. Wu
Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsMy lab seeks to identify mechanisms regulating cardiac lineage commitment during embryonic development and the biology of cardiac progenitor cells in development and disease. We believe that by understanding the transcriptional and epigenetic basis of cardiomyocyte growth and differentiation, we can identify the most effective ways to repair diseased adult hearts. We employ mouse and human embryonic and induced pluripotent stem cells as well as rodents as our in vivo models for investigation.
-
Courtney Wusthoff, MD
Associate Professor of Neurology and, by courtesy, of Pediatrics (Neonatology)
Current Research and Scholarly InterestsMy projects focus on clinical research in newborns with, or at risk, for brain injury. I use EEG in at-risk neonates to better understand the underlying pathophysiology of risk factors that may lead to worse outcomes. I am particularly interested in neonatal seizures and how they may exacerbate perinatal brain injury with a goal to identify treatments that might protect the vulnerable brain. I am also interested in EEG in other pediatric populations, as well as medical ethics and global health.
-
Tony Wyss-Coray, PhD
D. H. Chen Professor II
Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.