School of Medicine


Showing 1-10 of 75 Results

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering and of Genetics

    Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.

  • Ash A. Alizadeh, MD/PhD

    Ash A. Alizadeh, MD/PhD

    Moghadam Family Professor

    Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.

    Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials.

  • Steven Artandi, MD, PhD

    Steven Artandi, MD, PhD

    Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry

    Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.

  • Laura Attardi

    Laura Attardi

    Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics

    Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.

  • Jeffrey Axelrod

    Jeffrey Axelrod

    Professor of Pathology

    Current Research and Scholarly InterestsGenetic and cell biological analyses of signals controlling cell polarity and morphogenesis. Frizzled signaling and cytoskeletal organization.

  • Matei Banu, MD

    Matei Banu, MD

    Clinical Assistant Professor, Neurosurgery

    BioDr. Matei Banu is a fellowship-trained neurosurgeon at Stanford Health Care. He is also a clinical assistant professor in the Department of Neurosurgery at Stanford University School of Medicine.

    Dr. Banu specializes in treating brain, skull base, and pituitary tumors. He also specializes in the management of the buildup of brain fluid (hydrocephalus) and related conditions. He is skilled in minimally invasive techniques, such as microscopic surgery (using microscopes and tiny instruments to repair small structures) and endoscopic techniques (using a thin, flexible tube to take pictures inside the body).

    Dr. Banu often collaborates with rhinologists (doctors who diagnose and treat diseases of the nose and sinuses), head and neck surgeons, and otologists (doctors who diagnose and treat ear-related conditions). His goals are ensuring each patient receives comprehensive care and providing precise, compassionate treatment that enhances each patient’s quality of life.

    His research interests include developing personalized treatment strategies for brain and skull base cancers. Dr. Banu is exploring how aggressive tumors grow, resist treatment, and evade the immune system. Using tumor samples from patients, Dr. Banu and his team are testing novel drugs to create more effective therapies.

    Dr. Banu has published his research in several peer-reviewed journals, including Lancet Oncology, Cell, Nature Cell Biology, and Nature Communications. He has also contributed book chapters on topics like pediatric endoscopic skull base surgery and drug delivery for brain tumors. He has shared his findings at numerous national and international meetings in neurosurgery and oncology.

    Dr. Banu is a member of the American Association of Neurological Surgeons, the Congress of Neurological Surgeons, the North American Skull Base Society, and the Society for Neuro-Oncology.

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.

  • Dominique Bergmann

    Dominique Bergmann

    Shirley R. and Leonard W. Ely, Jr. Professor of the School of Humanities and Sciences

    Current Research and Scholarly InterestsWe use genetic, genomic and cell biological approaches to study cell fate acquisition, focusing on cases where cell fate is correlated with asymmetric cell division.

  • Helen M. Blau

    Helen M. Blau

    Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.

  • Onn Brandman

    Onn Brandman

    Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.