School of Medicine


Showing 1-10 of 43 Results

  • Christopher Beaulieu M.D., Ph.D.

    Christopher Beaulieu M.D., Ph.D.

    Professor of Radiology (Musculoskeletal Imaging) and, by courtesy, of Orthopaedic Surgery at the Stanford University Medical Center
    On Leave from 08/01/2020 To 10/31/2020

    Current Research and Scholarly InterestsInformatics and image processing techniques that provide infrastructure for diagnosis in musculoskeletal imaging. Decision support for improving accuracy of bone tumor diagnosis. Improved methods for MRI in the musculoskeletal system.

  • Hans-Christoph Becker, MD, FSABI, FSCCT

    Hans-Christoph Becker, MD, FSABI, FSCCT

    Clinical Professor, Radiology

    Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Francis Blankenberg

    Francis Blankenberg

    Associate Professor of Radiology (Pediatric Radiology) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsStudies on apoptotic cell death in vivo using the H MRS phenomenon.

  • Zhen Cheng

    Zhen Cheng

    Associate Professor (Research) of Radiology (Molecular Imaging)
    On Partial Leave from 10/01/2020 To 09/30/2021

    Current Research and Scholarly InterestsTo develop novel molecular imaging probes and techniques for non-invasively early detection of cancer using multimodality imaging technologies including PET, SPECT, MRI, optical imaging, etc.

  • Frederick T. Chin, Ph.D.

    Frederick T. Chin, Ph.D.

    Assistant Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly InterestsOur group's primary objectives are:

    1) Novel radioligand and radiotracer development.
    We will develop novel PET (Positron Emission Tomography) imaging agents with MIPS and Stanford faculty as well as other outside collaborations including academia and pharmaceutical industry. Although my personal research interests will be to discover and design of candidate probes that target molecular targets in the brain, our group focus will primarily be on cancer biology and gene therapy. In conjunction with our state-of-the-art imaging facility, promising candidates will be evaluated by PET-CT/MR imaging in small animals and primates. Successful radioligands and/or radiotracers will be extended towards future human clinical applications.

    2) Designing new radiolabeling techniques and methodologies.
    We will aim to design new radiolabeling techniques and methodologies that may have utility for future radiopharmaceutical development in our lab and the general radiochemistry community.

    3) Radiochemistry production of routine clinical tracers.
    Since we also have many interests with many Stanford faculty and outside collaborators, our efforts will also include the routine radiochemistry production of many existing radiotracers for human and non-human use. Our routine clinical tracers will be synthesized in custom-made or commercial synthetic modules (i.e. GE TRACERlab modules) housed in lead-shielded cells and be distributed manually or automatically (i.e. Comecer Dorothea) to our imagers.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor in Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Heike Daldrup-Link

    Heike Daldrup-Link

    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.

  • Bruce Daniel

    Bruce Daniel

    Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.

    2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics

    3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions.

  • Adam de la Zerda

    Adam de la Zerda

    Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering
    On Leave from 09/10/2020 To 09/09/2021

    Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo