School of Medicine


Showing 1-100 of 415 Results

  • Oliver O. Aalami, MD

    Oliver O. Aalami, MD

    Clinical Professor, Surgery - Vascular Surgery

    Current Research and Scholarly InterestsWe launched a national precision medicine PAD trial called, VascTrac (http://vasctrac.stanford.edu/). This trial is mobile phone based and leverages Apple's ResearchKit Platform to monitor a patient's activity both pre- and post-intervention. We are validating mobile phone surveillance for PAD patients and are currently enrolling.

  • Kevin M. Alexander, MD, FACC, FHFSA

    Kevin M. Alexander, MD, FACC, FHFSA

    Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    BioDr. Alexander is an advanced heart failure-trained cardiologist. He is also an Assistant Professor of Cardiovascular Medicine at Stanford University School of Medicine.

    Dr. Alexander specializes in the management of advanced heart failure and transplant cases, seeing a wide range of patients. He also has an active research laboratory, studying various forms of heart failure.

    Dr. Alexander has expertise in diagnosing and treating transthyretin cardiac amyloidosis, a critical yet underdiagnosed cause of heart failure among African Americans and the elderly. He is conducting extensive research to enhance our understanding of this condition, with grant support from the National Institutes of Health and American Heart Association, among other sources.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Cristina Maria Alvira

    Cristina Maria Alvira

    Associate Professor of Pediatrics (Critical Care)

    Current Research and Scholarly InterestsThe overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.

  • Katrin Andreasson

    Katrin Andreasson

    Professor of Neurology

    Current Research and Scholarly InterestsOur research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.

  • Timothy Angelotti MD, PhD

    Timothy Angelotti MD, PhD

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult MSD)

    Current Research and Scholarly InterestsMy research efforts are focused on investigating the pharmacological and physiological interface of the autonomic nervous system with effector organs. Utilizing molecular, cellular, and electrophysiological techniques, we are examining alpha2 adrenergic receptor function in cultured sympathetic neurons. Future research aims will be directed toward understanding neurotransmitter release in general.

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsOur laboratory's current transformative research efforts focus on studying immune health in the context of surgery and anesthesia.

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Associate Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.

  • Eric Appel

    Eric Appel

    Assistant Professor of Material Science and Engineering, by courtesy, of Pediatrics (Endocrinology), of Bioengineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.

  • Amin Arbabian

    Amin Arbabian

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsMy group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.

  • Shipra Arya

    Shipra Arya

    Associate Professor of Surgery (Vascular Surgery)
    On Partial Leave from 08/14/2022 To 01/14/2023

    BioShipra Arya, MD SM FACS is an Associate Professor of Surgery at the Stanford University School of Medicine and section chief of vascular surgery at VA Palo Alto Healthcare System. She has a Master’s degree in epidemiology from the Harvard School of Public Health with focus on research methodology and cardiovascular epidemiology. She completed her General Surgery Residency at Creighton University Medical Center followed by a Vascular Surgery Fellowship at University of Michigan. She has been funded by American Heart Association (AHA), NIH/NIA GEMSSTAR grant, VA Palo Alto Center for Innovation and Implementation (Ci2i) and is currently funded by VA HSR&D. The accumulated evidence from her research all points to the fact that frailty is a versatile tool that can be utilized to guide surgical decision making, inform patient consent and design quality improvement initiatives at the patient and hospital level. The field of frailty research in surgical population is still relatively nascent and her current work focuses on streamlining frailty evaluation, and implementation of patient and system level interventions to improve surgical outcomes and enhance patient centered care.

  • Euan A. Ashley

    Euan A. Ashley

    Associate Dean, School of Medicine, Roger and Joelle Burnell Professor of Genomics and Precision Health, Professor of Medicine (Cardiovascular Medicine), of Genetics, of Biomedical Data Science and, by courtesy, of Pathology

    Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.

  • Ritu Asija

    Ritu Asija

    Clinical Associate Professor, Pediatrics - Cardiology

    BioI specialize in providing cardiac critical care to infants, children and adults with congenital heart disease and heart failure. I am the Associate Director for the Pulmonary Artery Reconstruction Program at Stanford, helping to coordinate comprehensive multidisciplinary care for children with severe pulmonary artery abnormalities and right ventricular dysfunction. I was a Faculty Fellow at the Stanford Center for Biodesign in 2019-2020 and continue to work on development of new technologies for the unmet needs of pediatric patients. I have an interest in physician wellness and completed the Wellness Director course through the WellMD Center at Stanford.

  • Themistocles (Tim) Assimes

    Themistocles (Tim) Assimes

    Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsGenetic Epidemiology, Genetic Determinants of Complex Traits related to Cardiovasular Medicine, Coronary Artery Disease related pathway analyses and integrative genomics, Mendelian randomization studies, risk prediction for major adverse cardiovascular events, cardiovascular medicine related pharmacogenomics, ethnic differences in the determinants of Insulin Mediated Glucose Uptake, pharmacoepidemiology of cardiovascular drugs & outcomes

  • David M. Axelrod, MD

    David M. Axelrod, MD

    Clinical Professor, Pediatrics - Cardiology

    Current Research and Scholarly InterestsVirtual Reality Congenital Heart Disease experience: The Stanford Virtual Heart. Currently engaged with 19 academic medical centers across the globe using our Stanford Virtual Heart to educate students and trainees, and research our VR experience as a means for training and education. Also developing next generation modeling and image interaction with Stanford engineers and educators, to promote personalized surgical training in VR and advanced educational programs in congenital heart disease.

  • Leah Backhus

    Leah Backhus

    Associate Professor of Cardiothoracic Surgery (Thoracic Surgery)

    BioLeah Backhus trained in general surgery at the University of Southern California and cardiothoracic surgery at the University of California Los Angeles. She practices at Stanford Hospital and is Chief of Thoracic Surgery at the VA Palo Alto. Her surgical practice consists of general thoracic surgery with special emphasis on thoracic oncology and minimally invasive surgical techniques. She is also Co-Director of the Thoracic Surgery Clinical Research Program, and has grant funding through the Veterans Affairs Administration and NIH. Her current research interests are in imaging surveillance following treatment for lung cancer and cancer survivorship. She is a member of the National Lung Cancer Roundtable of the American Cancer Society serving as Chair of the Task Group on Lung Cancer in Women. She also serves on the Board of Directors of the Society of Thoracic Surgeons. As an educator, Dr. Backhus is the Associate Program Director for the Thoracic Track Residency and is the Chair of the ACGME Residency Review Committee for Thoracic Surgery which is the accrediting body for all cardiothoracic surgery training programs in the US.

  • Julie Baker

    Julie Baker

    Professor of Genetics
    On Partial Leave from 06/15/2021 To 01/01/2023

    Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.

  • Laurence Baker

    Laurence Baker

    Bing Professor of Human Biology and Senior Fellow at the Stanford Institute for Economic Policy Research

    Current Research and Scholarly InterestsDr. Baker's research is in the area of health economics, and focuses on the effects of financial incentives, organizational structures, and government policies on the health care delivery system, health care costs, and health outcomes.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor, and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She has been the Department Chair of Chemical Engineering from 2018. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 100 US patents with a Google Scholar H-index 190.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Hans-Christoph Becker, MD, FSABI, FSCCT

    Hans-Christoph Becker, MD, FSABI, FSCCT

    Clinical Professor, Radiology

    Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Gill Bejerano

    Gill Bejerano

    Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science

    Current Research and Scholarly Interests1. Automating monogenic patient diagnosis.
    2. The genomic signatures of independent divergent and convergent trait evolution in mammals.
    3. The logic of human gene regulation.
    4. The reasons for sequence ultraconservation.
    5. Cryptogenomics to bridge medical silos.
    6. Cryptogenetics to debate social injustice.
    7. Managing patient risk using machine learning.
    8. Understanding the flow of money in the US healthcare system.

  • Daniel Bernstein

    Daniel Bernstein

    Alfred Woodley Salter and Mabel G. Salter Endowed Professor of Pediatrics

    Current Research and Scholarly Interests1. Using iPSC-derived cardiomyocytes to understand hypertrophic cardiomyopathy and heart failure associated with congenital heart disease.
    2. Role of alterations in mitochondrial dycamics and function in normal physiology and disease.
    3. Differences between R and L ventricular responses to stress,
    4. Immune biomarkers of risk after pediatric VAD implantation.
    5. Biomarkers for post-transplant lymphoproliferative disorder.

  • Gerald Berry

    Gerald Berry

    Professor of Pathology

    Current Research and Scholarly InterestsCardiopulmonary and pulmonary transplant medicine; diagnostic surgical pathology

  • Vivek Bhalla, MD

    Vivek Bhalla, MD

    Associate Professor of Medicine (Nephrology)

    Current Research and Scholarly InterestsDr. Bhalla's two primary research interests are in the role of the kidney in diabetes and hypertension. We use molecular, biochemical, and transgenic approaches to study: (1) mechanisms diabetic kidney disease disease including the role of the endothelium to regulate inflammation and kidney injury; and (2) regulation of tubular transport of glucose, sodium, and potassium. These latter studies have treatment implications in diabetes, kidney disease, and hypertension.

  • Ami Bhatt

    Ami Bhatt

    Associate Professor of Medicine (Hematology) and of Genetics

    Current Research and Scholarly InterestsThe Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.

  • Y. Katherine Bianco

    Y. Katherine Bianco

    Clinical Associate Professor, Obstetrics & Gynecology - Maternal Fetal Medicine

    BioMy clinical interest in pregnancies complicated with birth defects has led my underlying research interests in genomic abnormalities in the human trophoblast carrying to faulty placentation. The latter began with initial work during K12 and KO8 funding. I took a great interest in the human placenta as it carries potential advantages over other tissues sources: first, this highly metabolically active organ is the potential source of many transcripts. Second, the placenta forms at a very early stage of embryonic development, potentially allowing detection of primary alterations as compared to secondary changes that may mask the underlying causal phenomena. Finally, studying early placentation may provide targets for development of novel molecular approaches, such as up-regulate or down-regulate genes, the protein products of which could potentially serve as molecular surrogates for diagnosis and treatment of pregnancy complication such as miscarriages, pre-eclampsia, pregnancy induced hypertension and intrauterine growth retardation. This work has led to the first Trisomy 21, Trisomy 18, trisomy 13 cell lines established from human placentas making it possible to apply gene editing in the early stages of human trophoblast development.

    As my primary clinical responsibility involves treating patients needing medical care and support through their high risk pregnancies, I am interested in factors that may impact outcomes, such as prenatal screening and diagnosis, maternal heart conditions, labor and delivery management, and safety approaches for the second stage of labor. In investigating length of labor and approaches to shorten the second stage, I have found methods of improving perinatal outcomes in diverse maternal populations.

    With regards to my interest in fetal medicine, I have worked in collaboration with other specialists such as radiologists and pediatric cardiologists utilizing imagining studies to assess and determine successful perinatal care and fetal survival.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Associate Professor of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.

  • Richard Bland

    Richard Bland

    Professor (Research) of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly InterestsOur research focuses on the pathogenesis and treatment of acute and chronic neonatal lung injury and the mechanisms that regulate lung fluid balance and alveolar & pulmonary vascular development after premature birth.

  • Francis Blankenberg

    Francis Blankenberg

    Associate Professor of Radiology (Pediatric Radiology) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsStudies on apoptotic cell death in vivo using the H MRS phenomenon.

  • Terrence Blaschke

    Terrence Blaschke

    Professor of Medicine and of Molecular Pharmacology, Emeritus

    Current Research and Scholarly InterestsClinical pharmacology of antiretroviral drugs

    Pharmacokinetic and pharmacodynamic mechanisms of variability in drug response.

    Drug development

  • Helen M. Blau

    Helen M. Blau

    Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.

  • Paul Bollyky

    Paul Bollyky

    Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Bollyky Lab studies host-pathogen interactions involving bacteriophage, bacteria, and the human immune system. Our goals are to gain insights into the pathogenesis of bacterial infections and to generate novel therapies to improve human health.

  • Jessica Brodt

    Jessica Brodt

    Clinical Associate Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsClinical Education
    Regional Anesthesia for Cardiothoracic Enhanced Recovery (RACER)
    Anesthesia for transcatheter and electrophyiology procedures

  • Anne Brunet

    Anne Brunet

    Michele and Timothy Barakett Endowed Professor

    Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.

  • Marion S. Buckwalter, MD, PhD

    Marion S. Buckwalter, MD, PhD

    Professor of Neurology and of Neurosurgery

    Current Research and Scholarly InterestsThe goal of the Buckwalter Lab is to improve how people recover after a stroke. We use basic and clinical research to understand the cells, proteins, and genes that lead to successful recovery of function, and also how complications develop that impact quality of life after stroke. Ongoing projects are focused on understanding how inflammatory responses are regulated after a stroke and how they affect short-term brain injury and long term outcomes like dementia and depression.

  • Thomas Burdon

    Thomas Burdon

    Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    Current Research and Scholarly InterestsNew technologies in the area of catheters, clamps, and, visualization devices for aid in cardiac surgery; distribution of, cardioplegia, both anterograde and retrograde as determined by, techniques in technetium pyro-phosphate scans; glucose insulin, potassium as an adjunct in cardiac surgery.

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology
    On Leave from 10/01/2021 To 08/30/2022

    Current Research and Scholarly InterestsMy genetics research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. We focus on novel methods development for complex disease genetics and risk prediction in multi-ethnic settings. I am also interested in clinical data science and development of new diagnostics.I am also interested in disruptive innovation for healthcare including modeling long-term risk shifts and novel payment models.

  • Eugene Butcher

    Eugene Butcher

    Klaus Bensch Professor of Pathology

    Current Research and Scholarly InterestsOur interests include:
    1) The physiology and function of lymphocyte homing in local and systemic immunity;
    2) Biochemical and genetic studies of molecules that direct leukocyte recruitment;
    3) Chemotactic mechanisms and receptors in vascular and immune biology;
    4) Vascular control of normal and pathologic inflammation and immunity;
    5) Systems biology of immune cell trafficking and programming in tumor immunity.

  • Michele Calos

    Michele Calos

    Professor of Genetics, Emerita

    Current Research and Scholarly InterestsMy lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.

    We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.

    We are working on 3 forms of muscular dystrophy.

    We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells.

  • Venita Chandra

    Venita Chandra

    Clinical Associate Professor, Surgery - Vascular Surgery
    Clinical Associate Professor (By courtesy), Neurosurgery

    BioDr. Chandra is a board certified vascular surgeon who specializes in cutting edge approaches to aortic aneurysmal disease, peripheral vascular disease and limb salvage.

  • Steven D. Chang, MD

    Steven D. Chang, MD

    Robert C. and Jeannette Powell Neurosciences Professor and, by courtesy, of Otolaryngology - Head & Neck Surgery (OHNS) and of Neurology

    Current Research and Scholarly InterestsClinical research includes studies in the treatment of cerebrovascular disorders, such as aneurysms and AVMs, as well as the use of radiosurgery to treat tumors and vascular malformations of the brain and spine.

    Dr. Chang is C0-Director of the Cyberknife Radiosurgery Program.

    Dr. Chang is also the head of the The Stanford Neuromolecular Innovation Program with the goal of developing new technologies to improve the diagnosis and treatment of patients affected by neurological conditions.

  • Tara I. Chang

    Tara I. Chang

    Associate Professor of Medicine (Nephrology)

    Current Research and Scholarly InterestsMy research focuses on issues such as blood pressure control, coronary revascularization, and the comparative effectiveness of cardioprotective medications in patients with chronic kidney disease, with the long-term goal of improving cardiovascular outcomes in these high-risk patients.

  • Akshay Chaudhari

    Akshay Chaudhari

    Assistant Professor (Research) of Radiology (Integrative Biomedical Imaging Informatics at Stanford) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsDr. Chaudhari is interested in the application of artificial intelligence techniques to all aspects of medical imaging, including automated schedule and reading prioritization, image reconstruction, quantitative analysis, and prediction of patient outcomes. His interests range from developing novel data-efficient machine learning algorithms to clinical deployment and validation of patient outcomes. He is also exploring combining imaging with clinical, natural language, and time series data.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Associate Professor of Mechanical Engineering

    Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.

  • (Robert) Jeenchen Chen

    (Robert) Jeenchen Chen

    Clinical Instructor, Cardiothoracic Surgery

    Current Research and Scholarly InterestsMy expertise is to interpret clinical data by biostatistics. My pending research are below:
    AI Prediction Model of Profound Cardiogenic Shock status post VA-ECMO
    Surgical outcomes of pericardiectomy for constrictive pericarditis by national and hospital databases
    The effect of hybrid operation on the outcomes of acute type-A aortic dissection by hospital data
    Calcium Physiology of Coronary Artery Smooth Muscle — the First Evidence from Human Transplant Cardiectomy (Presented at ISHLT 2017)

  • Christopher Cheng

    Christopher Cheng

    Adjunct Professor, Surgery - Vascular Surgery

    Current Research and Scholarly InterestsOur research laboratory focuses on understanding the mechanics of the cardiovascular system, especially with respect to interactions between medical devices and the dynamic cardiovascular environment. We use medical imaging, 3D geometric modeling, and custom deformation quantification techniques to investigate disease processes and medical device performance. We are interested in the dynamics of the heart, aorta, and peripheral vasculature, and are always seeking ways to apply our research to current and emerging therapies. While our research pursuits seek to add to the fundamental understanding of cardiovascular biomechanics, all of our projects are directly related to improving medical device design, evaluation, regulation, and their use in clinical practice.

  • Xingxing Shelley Cheng

    Xingxing Shelley Cheng

    Clinical Assistant Professor, Medicine - Nephrology

    Current Research and Scholarly InterestsDr. Xingxing Cheng's expertise is in applying the tools of decision science to clinical practice and policy analysis. Her current research is in the following areas:
    1) the costs, effectiveness, and implementation of work-up before kidney transplantation, including pretransplant cardiovascular screening;
    2) ethics of and decision-making in in multi-organ transplantation.

  • Glenn M. Chertow

    Glenn M. Chertow

    Norman S. Coplon/Satellite Healthcare Professor of Medicine and Professor, by courtesy, of Epidemiology and Population Health
    On Leave from 08/01/2022 To 08/31/2022

    Current Research and Scholarly Interestsclinical epidemiology, health services research, decision sciences, clinical trials in acute and chronic kidney disease

  • Wah Chiu

    Wah Chiu

    Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.

  • Valerie Chock

    Valerie Chock

    Associate Professor of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)

    Current Research and Scholarly InterestsNeurological monitoring in critically ill infants. Altered hemodynamics in neonates, especially in relation to prematurity, congenital heart disease, and central nervous system injury. Determination of the hemodynamic significance and effects of a patent ductus arteriosus in the preterm infant. Utilizing NIRS (near-infrared spectroscopy) and other technologies for improved monitoring in the NICU.

  • Danny Hung-Chieh Chou

    Danny Hung-Chieh Chou

    Assistant Professor of Pediatrics (Endocrinology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • William Clusin, MD

    William Clusin, MD

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsCardiac action potentials; tissue culture, voltage, clamp technique; role of calcium in ischemia arrhythmias; coronary, artery disease; myocardial infarction.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Ronnie Thomas Collins

    Ronnie Thomas Collins

    Clinical Associate Professor, Pediatrics - Cardiology

    Current Research and Scholarly InterestsMy research endeavors are focused on populations with connective tissue disorders that manifest as cardiovascular abnormalities, such as Williams, Marfan, and Loeys-Dietz syndromes. Additionally, as a member of the California Center of BD-Steps II, I study birth defects associated with congenital heart disease.

  • Carol Conrad

    Carol Conrad

    Associate Professor of Pediatrics (Pulmonary Medicine)

    Current Research and Scholarly InterestsI am interested in studying the effects of inflammation in the lung, in particular, how N-acetylcysteine may affect and decrease that in CF patients. I am the PI of a multi-center study researching this question. Additionally, in a separate study involving children who have received lung transplants, I am a participating site in an NIH-sponsored observational and mechanistic multi-center study that will examine the role of viral infections in causing chronic graft rejection.

  • Christopher H. Contag

    Christopher H. Contag

    Professor of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly InterestsWe develop and use the tools of molecular imaging to understand oncogenesis, reveal patterns of cell migration in immunosurveillance, monitor gene expression, visualize stem cell biology, and assess the distribution of pathogens in living animal models of human biology and disease. Biology doesn't occur in "a vacuum" or on coated plates--it occurs in the living body and that's were we look for biological patterns and responses to insult.

  • David N. Cornfield

    David N. Cornfield

    Anne T. and Robert M. Bass Professor of Pediatric Pulmonary Medicine and Professor, by courtesy, of Surgery

    Current Research and Scholarly InterestsOver the past 20 years, the Cornfield Laboratory has focused upon basic, translational and clinical research, with a primary focus on lung biology. As an active clinician-scientist, delivering care to acutely and chronically ill infants and children, our lab focuses on significant clinical challenges and tried to use science to craft novel solutions to difficult clinical problems.

  • Markus Covert

    Markus Covert

    Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.

  • Gerald Crabtree

    Gerald Crabtree

    David Korn, MD, Professor of Pathology and Professor of Developmental Biology
    On Leave from 10/01/2021 To 09/30/2022

    Current Research and Scholarly InterestsChromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin and epigenetic regulation in living cells.

  • Bianxiao Cui

    Bianxiao Cui

    Job and Gertrud Tamaki Professor of Chemistry

    Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.

  • Martha S. Cyert

    Martha S. Cyert

    Dr. Nancy Chang Professor

    Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Ronald L. Dalman MD

    Ronald L. Dalman MD

    Dr. Walter C. Chidester Professor

    Current Research and Scholarly InterestsVascular biology, arterial remodeling, aneurysm development; innovative treatment strategies for AAA, animal models of arterial disease, arterial remodeling and flow changes in spinal cord injury, genetic regulation of arterial aneurysm formation

  • Rajesh Dash, MD PhD;      Director of SSATHI & CardioClick

    Rajesh Dash, MD PhD; Director of SSATHI & CardioClick

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsI have two research areas:
    1) Heart disease in South Asians - genetic, metabolic, & behavioral underpinnings of an aggressive phenotype.

    2) Imaging cell injury & recovery in the heart. Using Cardiac MRI to visualize signals of early injury and facilitating preventive medical therapy. Optimizing new imaging methods for viable cells to delineate live heart cells or transplanted stem cells.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Mark M. Davis

    Mark M. Davis

    Director, Stanford Institute for Immunity, Transplantation and Infection and the Burt and Marion Avery Family Professor

    Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Robert DeBusk

    Robert DeBusk

    Professor of Medicine, Emeritus

    Current Research and Scholarly InterestsExperimental and clinical epidemiology of myocardial, infarction; exercise testing; cardiac risk factor management;, cardiac rehabilitation; systems for patient management; ischemic, heart disease; computer-based expert systems.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering

    BioUtkan Demirci is a tenured professor in the School of Medicine at Stanford University and serves as the Interim Division Chief and Director of the Canary Center at Stanford for Cancer Early Detection in the Department of Radiology. Prior to Stanford, he was an Associate Professor of Medicine at the Brigham and Women’s Hospital, Harvard Medical School, and a faculty member of the Harvard-MIT Health Sciences and Technology division.

    Professor Demirci received his PhD from Stanford University in Electrical Engineering in 2005 and holds M.S. degrees in Electrical Engineering, and in Management Science and Engineering. He has published over 200 peer-reviewed journal articles, 24 book chapters, 7 edited books, and several hundred abstracts and proceedings, as well as having over 25 patents and disclosures pending or granted. He has mentored and trained hundreds of successful scientists, entrepreneurs and academicians and fostered research and industry collaborations around the world. Dr. Demirci was awarded the NSF CAREER Award, and IEEE EMBS Early Career Award. He is currently a fellow of the the American Institute for Medical and Biological Engineering (AIMBE, 2017), and Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research and serves as an editorial board member for a number of peer-reviewed journals.

    The BAMM Lab group focuses on developing innovative extracellular vesicle isolation tools, point-of-care technologies and creating microfluidic platforms for early cancer detection with broad applications to multiple diseases including infertility and HIV. Dr. Demirci’s lab has collaborated with over 50 research groups and industry partners around the world. His seminal work in microfluidics has led to the development of innovative FDA-approved platform technologies in medicine and many of his inventions have been industry licensed. He holds several FDA-approved and CE-marked technologies that have been widely used by fertility clinics with assisted reproductive technologies leading to over thousands of live births globally and in the US.

    Dr. Demirci is a serial academic entrepreneur and co-founder of DxNow, Zymot, Levitas Bio, Mercury Biosciences and Koek Biotech and serves as an advisor, consultant and/or board member to some early stage companies and investment groups.

  • Tushar Desai

    Tushar Desai

    Associate Professor of Medicine (Pulmonary and Critical Care)

    Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.

  • Gundeep Dhillon, MD, MPH

    Gundeep Dhillon, MD, MPH

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests1. Use of an administrative database (UNOS) to study lung transplant outcomes.
    2. Expression of the plasminogen activator inhibitor (PAI) 1 antibody in peripheral blood after lung transplantation and its association with bronchiolitis obliterans syndrome (chronic rejection).
    3. Impact of airway hypoxia, due to lack of bronchial circulation, on long-term lung transplant outcomes.
    4. CMV specific T-cell immunity in lung transplant recipients and its impact on acute rejection.

  • Jennifer Dionne

    Jennifer Dionne

    Senior Associate Vice Provost for Research Platforms/Shared Facilities, Associate Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Radiology

    BioJennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an Associate Professor of Materials Science and Engineering and of Radiology (by courtesy) at Stanford. Jen received her Ph.D. in Applied Physics at the California Institute of Technology, advised by Harry Atwater, and B.S. degrees in Physics and Systems & Electrical Engineering from Washington University in St. Louis. Prior to joining Stanford, she served as a postdoctoral researcher in Chemistry at Berkeley, advised by Paul Alivisatos. Jen's research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award (2019), an NIH Director's New Innovator Award (2019), a Moore Inventor Fellowship (2017), the Materials Research Society Young Investigator Award (2017), Adolph Lomb Medal (2016), Sloan Foundation Fellowship (2015), and the Presidential Early Career Award for Scientists and Engineers (2014), and was featured on Oprah’s list of “50 Things that will make you say ‘Wow!'"

  • Norman Downing

    Norman Downing

    Clinical Assistant Professor, Medicine - Biomedical Informatics Research

    BioI am a faculty member in Biomedical Informatics Research at Stanford and board-certified internal medicine and clinical informatics. I split my time between clinical practice, hospital medical informatics and applications of artificial intelligence in healthcare. I work with the Clinical Excellence Research Center – a research group dedicated to reducing the cost of high-quality care – directing the Partnership in AI collaboration with the Stanford Artificial Intelligence Lab. Recognizing that the complexity of medicine has grown beyond the abilities of even the most expert clinician, we focus applications of computer vision to address some of the greatest challenges in healthcare: perfecting intended care for frail patients in settings ranging from the intensive care unit to the home. I have published work in the New England Journal of Medicine, Health Affairs, Annals of Internal Medicine, and the Journal of the American Medical Informatics Association. My interests include a design-based approach to understand how technology has impacted the work of clinicians and implications for new care models, workflow, and technology integration.

  • Anne Dubin

    Anne Dubin

    Professor of Pediatrics (Pediatric Cardiology)

    Current Research and Scholarly InterestsArrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • Gozde Durmus

    Gozde Durmus

    Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.

  • Jesse Engreitz

    Jesse Engreitz

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.

    We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease.

  • Daniel Bruce Ennis

    Daniel Bruce Ennis

    Professor of Radiology (Veterans Affairs)

    BioDaniel Ennis {he/him} is a Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a postdoc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to the Department of Radiology at Stanford University as faculty in the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.

  • James Fann

    James Fann

    Professor of Cardiothoracic Surgery (Adult Cardiac Surgery) at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsCardiac surgery education and simulation-based learning, coronary artery bypass surgery, cardiac valve disease

  • William Fearon, MD

    William Fearon, MD

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsDr. Fearon's general research interest is coronary physiology. In particular, he is investigating invasive methods for evaluating the coronary microcirculation. His research is currently funded by an NIH R01 Award.

  • Jeffrey A. Feinstein, MD, MPH

    Jeffrey A. Feinstein, MD, MPH

    Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Michael Fischbein

    Michael Fischbein

    Associate Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    Current Research and Scholarly InterestsMolecular and genetic mechanisms of aortic aneurysm/dissection development. Molecular mechanisms of aneurysm formation in Marfan Syndrome. Clinical research interests include thoracic aortic diseases (aneurysms, dissections).