School of Medicine


Showing 1-20 of 40 Results

  • Manuel R. Amieva

    Manuel R. Amieva

    Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy laboratory studies how bacteria colonize our bodies for long periods of time, and how interactions between bacteria and the epithelial surfaces of the gastrointestinal tract and skin may lead to disease. Epithelial surfaces are the first barrier against infection, but they also where our bodies meet and co-evolve with the microbial world.. Several of our studies have focused on the epithelial junctions as a target for bacterial pathogens. The host epithelium uses its epithelial junctions to form a tight but dynamic barrier with an external surface that is inhospitable to microbial attachment, secretes anti-microbial compounds, and has a rapid rate of self-renewal. The balance in the microbe-epithelial relationship results in silent commensalism or symbiosis; an imbalance results in diseases ranging from acute bacterial invasive disease to chronic ulcers or carcinoma.

    Our laboratory has developed novel microscopy applications such as quantitative 3D confocal microscopy, electron microscopy, time-lapse imaging, microinjection and micromanipulation to visualize the interaction of pathogens with epithelial cells in culture and in animal and human tissues. Many of out studies focus on the gastric pathogen Helicobacter pylori, but we have also expanded our investigations to include the intestinal pathogens Listeria monocytogenes and Salmonella enterica, and the skin pathogen and colonizer Staphylococcus aureus. I believe that elucidating how microbes communicate with and alter our epithelial cells at a molecular level will be important for finding novel therapeutic targets to control mucosal colonization and prevent invasive disease.

    Using this perspective, we have uncovered several novel concepts of how bacteria colonize and breach our epithelial surfaces. For example, we discovered that Helicobacter pylori target the intercellular junctions, and in particular that the virulence factor CagA affects junction assembly and cell polarity. This confers H. pylori the ability to extract nutrients and grow directly on the epithelial surface. We also found that these properties of CagA have consequences for cellular transformation of the epithelium. For instance, we showed that H. pylori affect the activity and state of epithelial stem cells in the stomach by colonizing the epithelial surface deep in the gastric glands. This gland-associated population is essential for pathological inflammation and hyperplasia in animal models, and confers significant colonization advantages to the bacteria. Our Listeria research uncovered a new mechanism and site where bacteria can breach the gastrointestinal epithelial barrier to invade. We found that Listeria find their receptor for invasion at sites of epithelial senescence, where the epithelial junctions undergo dynamic turnover. To study Salmonella and H. pylori we have developed a human organoid model to study their interactions with human gut epithelium in vitro. To study Staphylococcus aureus pathogenesis, we have developed methods to visualize infection at the scale of a single bacterial microcolony using an organoid culture system of human keratinocytes and fibroblasts that grow into a 3D skin-equivalent. We recently identified several proteins at the eptithelial junctions as host factors involved in the pathogenesis of one of Staphylococcus aureus major toxins.

  • Jennifer K. Bando

    Jennifer K. Bando

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsMucosal immunology, innate lymphocytes

  • Helen M. Blau

    Helen M. Blau

    Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology
    On Leave from 06/01/2025 To 08/31/2025

    Current Research and Scholarly InterestsOur lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for serine and cysteine hydrolases.

    2) Understanding the role of hydrolases in bacterial pathogenesis and the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • Paul Bollyky

    Paul Bollyky

    Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsBacteriophages, viruses that infect bacteria, are abundant in the human body. However, their contributions to human health and disease are largely unknown. The Bollyky Lab
    studies interactions between phages and both their human and bacterial hosts with the goal of developing innovative strategies to improve human health.

  • John  Boothroyd

    John Boothroyd

    Burt and Marion Avery Professor of Immunology, Emeritus

    Current Research and Scholarly InterestsWe are intereseted in the interaction between the protozoan parasite Toxoplasma gondii and its mammalian host. We use a combination of molecular and genetic tools to understand how this obligate intracellular parasite can invade almost any cell it encounters, how it co-opts a host cell once inside and how it evades the immune response to produce a life-long, persistent infection.

  • Jan Carette

    Jan Carette

    Professor of Microbiology and Immunology
    On Partial Leave from 01/16/2025 To 09/16/2025

    Current Research and Scholarly InterestsOur research focuses on the identification of host genes that play critical roles in the pathogenesis of infectious agents including viruses. We use haploid genetic screens in human cells as an efficient approach to perform loss-of-function studies. Besides obtaining fundamental insights on how viruses hijack cellular processes and on host defense mechanisms, it may also facilitate the development of new therapeutic strategies.

  • Yueh-hsiu Chien

    Yueh-hsiu Chien

    Professor of Microbiology & Immunology

    Current Research and Scholarly InterestsContribution of T cells to immunocompetence and autoimmunity; how the immune system clears infection, avoids autoimmunity and how infection impacts on the development of immune responses.

  • Wah Chiu

    Wah Chiu

    Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.

  • Laura M.K. Dassama

    Laura M.K. Dassama

    Assistant Professor of Chemistry and of Microbiology and Immunology
    On Leave from 04/01/2025 To 06/30/2025

    BioLaura Dassama is a chemical biologist who uses principles from chemistry and physics to understand complex biological phenomena. Her group’s primary goal is to use detailed understanding of the factors that enable interactions between biological molecules to provide insights that allow functional control of those molecules. Her research projects aim to 1) discover the drivers of biomolecular interactions and 2) leverage that information to modulate disease relevant proteins.

  • Dylan Dodd

    Dylan Dodd

    Assistant Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsHarnessing the gut microbiome to treat human disease.

  • Elizabeth Egan

    Elizabeth Egan

    Associate Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsMalaria is a parasitic disease transmitted by mosquitos that is a leading cause of childhood mortality globally. Public health efforts to control malaria have historically been hampered by the rapid development of drug resistance. The goal of our research is to understand the molecular determinants of critical host-pathogen interactions in malaria, with a focus on the erythrocyte host cell. Our long-term goal is to develop novel approaches to prevent or treat malaria and improve child health.

  • Shirit Einav

    Shirit Einav

    Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, coronaviruses, encephalitic alphaviruses, and Ebola, and means to predict progression to severe disease.

  • Stephen J. Galli, MD

    Stephen J. Galli, MD

    Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.

  • Leonor García-Bayona

    Leonor García-Bayona

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe human microbiome is evolving rapidly (i.e. over our lifetimes) following changes in modern lifestyles, especially in industrialized countries. The García-Bayona lab seeks to understand how horizontal gene transfer shapes interactions within the human intestinal microbiota and what the implications of this widespread phenomenon are for community properties relevant to human health (for example, the ability of the gut community to recover after antibiotic treatment). There is currently only a superficial understanding of the different cellular roles of most exchanged genes, the mechanisms governing their spread and their effect community dynamics. Our lab works on bridging the existing gap between the current systems-level observational studies and a mechanistic understanding through bacterial genetics and physiology. We take a bottom-up approach (from genes to communities), incorporating genetics, metagenomics, population analyses and experimental evolution in tractable bacterial consortia.

  • Matthias Garten

    Matthias Garten

    Assistant Professor of Microbiology and Immunology and of Bioengineering

    Current Research and Scholarly InterestsWith a creative, collaborative, biophysical mindset, we aim to understand the ability non-model organisms to interface with environment to a point at which we can exploit the mechanisms finding cures against diseases and use the mechanisms as tools that we can use to engineer the environment. By developing approaches that allow a quantitative understanding and manipulation of molecular transport our research makes non-model organisms accessible to researchers and engineers.

    Specifically, we are studying how the malaria parasite takes control over red blood cells. By learning the biophysical principles of transport in between the host and the parasite we can design ways to kill the parasite or exploit it to reengineer red blood cells. The transport we study is broadly encompassing everything from ions to lipids and proteins. We use variations of quantitative microscopy and electrophysiology to gain insight into the unique strategies the parasite evolved to survive.

  • Jeffrey S.  Glenn, M.D., Ph.D.

    Jeffrey S. Glenn, M.D., Ph.D.

    Joseph D. Grant Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.

  • Michael R. Howitt

    Michael R. Howitt

    Assistant Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.

  • KC Huang

    KC Huang

    Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsHow do cells determine their shape and grow?
    How do molecules inside cells get to the right place at the right time?

    Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations.