School of Medicine


Showing 1-20 of 44 Results

  • Christopher Beaulieu M.D., Ph.D.

    Christopher Beaulieu M.D., Ph.D.

    Professor of Radiology (Musculoskeletal Imaging) and, by courtesy, of Orthopaedic Surgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsInformatics and image processing techniques that provide infrastructure for diagnosis in musculoskeletal imaging. Decision support for improving accuracy of bone tumor diagnosis. Improved methods for MRI in the musculoskeletal system.

  • Hans-Christoph Becker, MD, FSABI, FSCCT

    Hans-Christoph Becker, MD, FSABI, FSCCT

    Clinical Professor, Radiology

    Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Francis Blankenberg

    Francis Blankenberg

    Associate Professor of Radiology (Pediatric Radiology) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsStudies on apoptotic cell death in vivo using the H MRS phenomenon.

  • Zhen Cheng

    Zhen Cheng

    Associate Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly InterestsTo develop novel molecular imaging probes and techniques for non-invasively early detection of cancer using multimodality imaging technologies including PET, SPECT, MRI, optical imaging, etc.

  • Frederick T. Chin, Ph.D.

    Frederick T. Chin, Ph.D.

    Assistant Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly InterestsOur group's primary objectives are:

    1) Novel radioligand and radiotracer development.
    We will develop novel PET (Positron Emission Tomography) imaging agents with MIPS and Stanford faculty as well as other outside collaborations including academia and pharmaceutical industry. Although my personal research interests will be to discover and design of candidate probes that target molecular targets in the brain, our group focus will primarily be on cancer biology and gene therapy. In conjunction with our state-of-the-art imaging facility, promising candidates will be evaluated by PET-CT/MR imaging in small animals and primates. Successful radioligands and/or radiotracers will be extended towards future human clinical applications.

    2) Designing new radiolabeling techniques and methodologies.
    We will aim to design new radiolabeling techniques and methodologies that may have utility for future radiopharmaceutical development in our lab and the general radiochemistry community.

    3) Radiochemistry production of routine clinical tracers.
    Since we also have many interests with many Stanford faculty and outside collaborators, our efforts will also include the routine radiochemistry production of many existing radiotracers for human and non-human use. Our routine clinical tracers will be synthesized in custom-made or commercial synthetic modules (i.e. GE TRACERlab modules) housed in lead-shielded cells and be distributed manually or automatically (i.e. Comecer Dorothea) to our imagers.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor in Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Heike Daldrup-Link

    Heike Daldrup-Link

    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.

  • Bruce Daniel

    Bruce Daniel

    Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.

    2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics

    3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions.

  • Adam de la Zerda

    Adam de la Zerda

    Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center)

    BioDr. Demirci is currently a Professor at Stanford University School of Medicine with tenure at the Canary Center for Early Cancer Detection. Prior to his Stanford appointment, he was an Associate Professor of Medicine at Brigham and Women's Hospital, Harvard Medical School and at Harvard-MIT Division of Health Sciences and Technology serving at the Division of Biomedical Engineering, Division of Infectious Diseases and Renal Division. He leads a group of 20+ researchers focusing on micro- and nano-scale technologies. He received his B.S. degree in Electrical Engineering in 1999 as a James B. Angell Scholar (summa cum laude) from University of Michigan, Ann Arbor. He received his M.S. degree in 2001 in Electrical Engineering, M.S. degree in Management Science and Engineering in 2005, and Ph.D. in Electrical Engineering in 2005, all from Stanford University.

    The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in applying micro- and nanoscale technologies to problems in medicine at the interface between micro/nanoscale engineering and medicine. Our goal is to apply innovative technologies to clinical problems. Our major research theme focuses on creating new microfluidic technology platforms targeting broad applications in medicine. In this interdisciplinary space at the convergence of engineering, biology and materials science, we create novel technologies for disposable point-of-care (POC) diagnostics and monitoring of infectious diseases, cancer and controlling cellular microenvironment in nanoliter droplets for biopreservation and microscale tissue engineering applications. These applications are unified around our expertise to test the limits of cell manipulation by establishing microfluidic platforms to provide solutions to real world problems at the clinic.

    Our lab creates technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. Dr. Demirci has published over 120 peer reviewed publications in journals including PNAS, Nature Communications, Advanced Materials, Small, Trends in Biotechnology, Chemical Society Reviews and Lab-chip, over 150 conference abstracts and proceedings, 10+ book chapters, and an edited book. His work was highlighted in Wired Magazine, Nature Photonics, Nature Medicine, MIT Technology Review, Reuters Health News, Science Daily, AIP News, BioTechniques, and Biophotonics. He is fellow-elect of the American Institute of Biological and Medical Engineering (AIMBE, 2017). His scientific work has been recognized by numerous national and international awards including the NSF Faculty Early Career Development (CAREER) Award (2012), the IEEE-EMBS Early Career Achievement Award (2012), Scientist of the year award from Stanford radiology Department (2017). He was selected as one of the world’s top 35 young innovators under the age of 35 (TR-35) by the MIT Technology Review at the age of 28. In 2004, he led a team that won the Stanford University Entrepreneur’s Challenge Competition and Global Start-up Competition in Singapore. His work has been translated to start-up companies including DxNow, KOEK Biotechnology and LEVITAS. There has been over 10,000 live births in the US, Europe and Turkey using the sperm selection technology that came out of Dr. Demirci's lab. He has been cited over 3000 times within the last two years (H index, 68).

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Gary Glover

    Gary Glover

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering

    Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.

  • Edward Graves

    Edward Graves

    Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsApplications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.

  • Brian A. Hargreaves

    Brian A. Hargreaves

    Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications and augmented reality applications in medicine. These include abdominal, breast and musculoskeletal imaging, which require development of faster, quantitative, and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools and augmented reality in medicine.

  • Robert Herfkens

    Robert Herfkens

    Professor of Radiology (Cardiovascular Imaging), Emeritus

    Current Research and Scholarly InterestsImaging of cardiovascular diseases with CT, magnetic resonance imaging and spectroscopy

  • Andrei Iagaru

    Andrei Iagaru

    Professor of Radiology (Nuclear Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsCurrent research projects include:
    1) PET/MRI and PET/CT for Early Cancer Detection
    2) Targeted Radionuclide Therapy
    3) Clinical Translation of Novel PET Radiopharmaceuticals;

  • Debra M. Ikeda, M.D.

    Debra M. Ikeda, M.D.

    Professor of Radiology (Breast Imaging)

    Current Research and Scholarly InterestsMy research interests are mammography positioning, tomosynthesis (DBT) cancer detection and diagnosis, MRI, DWI, MRI-guided breast biopsy, breast cancer recurrence, tattoo/ fiducial/wire localization of axillary lymph nodes, breast cancer and FDG PET-CT imaging, artifical intelligence/deep learning, breast density, density notification legislation, COVID-19 effects on Breast Imaging Centers and personnel

  • Aya Kamaya, MD

    Aya Kamaya, MD

    Associate Professor of Radiology (Body Imaging) at the Stanford University Medical Center

    Current Research and Scholarly InterestsHepatobiliary imaging
    Hepatocellular carcinoma
    Urologic imaging
    Gynecologic imaging
    Thyroid imaging
    Novel ultrasound technologies
    Perfusion CT imaging of abdominal tumors