School of Medicine
Showing 1-29 of 29 Results
-
Philip Beachy
The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.
-
Carolyn Bertozzi
Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology
BioCarolyn Bertozzi is the Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology at Stanford University, and an Investigator of the Howard Hughes Medical Institute. She completed her undergraduate degree in Chemistry from Harvard University in 1988 and her Ph.D. in Chemistry from UC Berkeley in 1993. After completing postdoctoral work at UCSF in the field of cellular immunology, she joined the UC Berkeley faculty in 1996. In June 2015, she joined the faculty at Stanford University and became the co-director and Institute Scholar at Sarafan ChEM-H.
Prof. Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface glycosylation pertinent to disease states. Her lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.
Prof. Bertozzi has been recognized with many honors and awards for both her research and teaching accomplishments. She is an elected member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the German Academy of Sciences Leopoldina. Some awards of note include the Nobel Prize in Chemistry, Lemelson-MIT award for inventors, Whistler Award, Ernst Schering Prize, MacArthur Foundation Fellowship, the ACS Award in Pure Chemistry, Tetrahedron Young Investigator Award, and Irving Sigal Young Investigator Award of the Protein Society. Her efforts in undergraduate education have earned her the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching. -
Matthew Bogyo
Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:
1) Design and synthesis of novel chemical probes for serine and cysteine hydrolases.
2) Understanding the role of hydrolases in bacterial pathogenesis and the human parasites, Plasmodium falciparum and Toxoplasma gondii.
3) Defining the specific functional roles of proteases during the process of tumorogenesis.
4) In vivo imaging of protease activity -
Onn Brandman
Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.
-
James K. Chen
Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry
Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.
-
Gheorghe Chistol
Assistant Professor of Chemical and Systems Biology
Current Research and Scholarly InterestsResearch in my laboratory is aimed at understanding how eukaryotes replicate their DNA despite numerous challenges (collectively known as replication stress), and more generally – how eukaryotic cells safeguard genome integrity. Specifically, we are investigating: (i) mechanisms that regulate the activity of the replicative helicase during replication stress, (ii) mechanisms that control the inheritance of epigenetic information during replication, and (iii) mechanisms of ubiquitin-mediated regulation of genome maintenance. We utilize single-molecule microscopy to directly image fluorescently-labeled replication factors and track them in real time in Xenopus egg extracts. I developed this system as a postdoctoral fellow, and used it to monitor how the eukaryotic replicative helicase copes with DNA damage. We plan to further extend the capabilities of this platform to directly visualize other essential replication factors, nucleosomes, and regulatory post-translational modifications like ubiquitin chains. By elucidating molecular mechanisms responsible for maintaining genome stability, we aim to better understand the link between genome instability and cancer, and how these mechanisms can be harnessed to improve disease treatment.
-
Danny Hung-Chieh Chou
Associate Professor of Pediatrics (Endocrinology) and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.
-
Karlene Cimprich
Professor of Chemical and Systems Biology and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.
-
Steven M. Corsello
Assistant Professor of Medicine (Oncology) and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur laboratory operates at the intersection of functional genomics and chemical biology, with the goal of advancing novel molecular mechanisms of cancer inhibition to clinical use. We aim to 1) leverage phenotypic screening and functional genomics to determine novel anti-cancer mechanisms of small molecules, 2) develop new targeted therapy approaches against solid tumors, and 3) build a comprehensive community resource for drug repurposing discovery.
-
Markus Covert
Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.
-
Justin Du Bois
Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology
BioResearch and Scholarship
Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.
The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.
In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models. -
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Nathanael S. Gray
Krishnan-Shah Family Professor
BioNathanael Gray is the Krishnan-Shah Family Professor of Chemical and Systems Biology at Stanford, Co-Director of Cancer Drug Discovery Co-Leader of the Cancer Therapeutics Research Program, Member of Chem-H, and Program Leader for Small Molecule Drug Discovery for the Innovative Medicines Accelerator (IMA). His research utilizes the tools of synthetic chemistry, protein biochemistry, and cancer biology to discover and validate new strategies for the inhibition of anti-cancer targets. Dr. Gray’s research has had broad impact in the areas of kinase inhibitor design and in circumventing drug resistance.
Dr. Gray received his PhD in organic chemistry from the University of California at Berkeley in 1999 after receiving his BS degree with the highest honor award from the same institution in 1995. After completing his PhD, Dr. Gray was recruited to the newly established Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, California. During his six year stay at GNF, Dr. Gray became the director of biological chemistry where he supervised a group of over fifty researchers integrating chemical, biological and pharmacological approaches towards the development of new experimental drugs. Some of the notable accomplishments of Dr. Gray’s team at GNF include: discovery of the first allosteric inhibitors of wild-type and mutant forms of BCR-ABL which resulted in clinical development of ABL001; discovery of the first selective inhibitors of the Anaplastic Lymphoma Kinase (ALK), an achievement that led to the development of now FDA-approved drugs such as ceritinib (LDK378) for the treatment of EML4-ALK expressing non-small cell lung cancer (NSCLC); and discovery that sphingosine-1-phosphate receptor-1 (S1P1) is the pharmacologically relevant target of the immunosuppressant drug Fingomilod (FTY720) followed by the development of Siponimod (BAF312), which is currently used for the treatment of multiple sclerosis.
In 2006, Dr. Gray returned to academia as a faculty member at the Dana Farber Cancer Institute and Harvard Medical School in Boston. There, he has established a discovery chemistry group that focuses on developing first-in-class inhibitors for newly emerging biological targets, including resistant alleles of existing targets, as well as inhibitors of well-validated targets, such as Her3 and RAS, that have previously been considered recalcitrant to small molecule drug development. Dr. Gray’s team developed covalent inhibitors of the T790M mutant of EGFR inspired the development of Osimertinib (AZD9291), now FDA approved for treatment of patients with relapsed lung cancer due to resistance to first generation EGFR inhibitors. Dr. Gray has also developed structure-based, generalized approaches for designing drugs to overcome one of the most common mechanisms of resistance observed against most kinase inhibitor drugs, mutation of the so-called "gatekeeper" residue, which has been observed in resistance to drugs targeting BCR-ABL, c-KIT and PDGFR.
In 2021, Dr. Gray joined Stanford University where he has joined the Stanford Cancer Institute, Chem-H and the Innovative Medicines Accelerator (IMA) to spur the development of prototype drugs.
These contributions have been recognized through numerous awards including the National Science Foundation’s Career award in 2007, the Damon Runyon Foundation Innovator award in 2008, the American Association for Cancer Research for Team Science in 2010 and for Outstanding Achievement in 2011 and the American Chemical Society award for Biological Chemistry in 2011, and the Nancy Lurie Marks endowed professorship in 2015 and the Paul Marks Prize in 2019, and the Hope Funds for Cancer Research in 2023. -
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Michael Lin
Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology
On Partial Leave from 07/01/2024 To 12/31/2024Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.
-
Nicole M. Martinez
Assistant Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsThe Martinez lab studies RNA regulatory mechanisms that control gene expression. We focus on mRNA processing, RNA modifications and their roles in development and disease.
-
Mark Mercola
Professor of Medicine (Cardiovascular) and, by courtesy, of Chemical and Systems Biology
BioDr. Mercola is Professor of Medicine and Professor in the Stanford Cardiovascular Institute. He completed postdoctoral training at the Dana-Farber Cancer Institute and Harvard Medical School, was on the faculty in the Department of Cell Biology at Harvard Medical School for 12 years, and later at the Sanford-Burnham-Prebys Institute and Department of Bioengineering at the University of California, San Diego before relocating to Stanford in 2015.
Prof. Mercola is known for identifying many of the factors that are responsible for inducing and forming the heart, including the discovery that Wnt inhibition is a critical step in cardiogenesis that provided the conceptual basis and reagents for the large-scale production of cardiovascular tissues from pluripotent stem cells. He has collaborated with medicinal chemists, optical engineers and software developers to pioneer the use of patient iPSC-cardiomyocytes for disease modeling, safety pharmacology and drug development. His academic research is focused on developing and using quantitative high throughput assays of patient-specific cardiomyocyte function to discover druggable targets for preserving contractile function in heart failure and promoting regeneration following ischemic injury. He co-established drug screening and assay development at the Conrad Prebys Drug Discovery Center (San Diego), which operated as one of 4 large screening centers of the US National Institutes of Health (NIH) Molecular Libraries screening initiative and continues as one of the largest academic drug screening centers.
Prof. Mercola received an NIH MERIT award for his work on heart formation. He holds numerous patents, including describing the invention of the first engineered dominant negative protein and small molecules for stem cell and cancer applications. He serves on multiple editorial and advisory boards, including Vala Sciences, Regencor, The Ted Rogers Centre for Heart Research and the Human Biomolecular Research Institute. His laboratory is funded by the National Institutes of Health (NIH), California Institute for Regenerative Medicine, Phospholamban Foundation and Fondation Leducq. -
Daria Mochly-Rosen
George D. Smith Professor of Translational Medicine
Current Research and Scholarly InterestsTwo areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.
-
Kacper Rogala
Assistant Professor of Structural Biology and of Chemical and Systems Biology
Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.
-
Richard Roth
Professor of Chemical and Systems Biology, Emeritus
Current Research and Scholarly InterestsInsulin is one of the primary regulators of rapid anabolic responses in the body. Defects in the synthesis and/or ability of cells to respond to insulin results in the condition known as diabetes mellitus. To better design methods of treatment for this disorder, we have been focusing our research on how insulin elicits its various biological responses.
-
Jan Skotheim
Professor of Biology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsMy overarching goal is to understand how cell growth triggers cell division. Linking growth to division is important because it allows cells to maintain specific size range to best perform their physiological functions. For example, red blood cells must be small enough to flow through small capillaries, whereas macrophages must be large enough to engulf pathogens. In addition to being important for normal cell and tissue physiology, the link between growth and division is misregulated in cancer.
-
Aaron F. Straight
Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.
-
Tom Wandless
Professor of Chemical and Systems Biology
Current Research and Scholarly InterestsWe employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.
-
Paul Wender
Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis
-
Marius Wernig
Professor of Pathology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine
-
Joanna Wysocka
Lorry Lokey Professor and Professor of Developmental Biology
Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.