School of Medicine
Showing 1-50 of 74 Results
-
Monther Abu-Remaileh
Assistant Professor of Chemical Engineering and of Genetics
Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.
-
Ash A. Alizadeh, MD/PhD
Moghadam Family Professor
Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.
Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials. -
Steven Artandi, MD, PhD
Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry
Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.
-
Laura Attardi
Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics
Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.
-
Jeffrey Axelrod
Professor of Pathology
Current Research and Scholarly InterestsGenetic and cell biological analyses of signals controlling cell polarity and morphogenesis. Frizzled signaling and cytoskeletal organization.
-
Philip Beachy
The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.
-
Dominique Bergmann
Shirley R. and Leonard W. Ely, Jr. Professor of the School of Humanities and Sciences
Current Research and Scholarly InterestsWe use genetic, genomic and cell biological approaches to study cell fate acquisition, focusing on cases where cell fate is correlated with asymmetric cell division.
-
Helen M. Blau
Donald E. and Delia B. Baxter Foundation Professor, Director, Baxter Laboratory for Stem Cell Biology and Professor, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsProf. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.
-
Onn Brandman
Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.
-
Anne Brunet
Michele and Timothy Barakett Endowed Professor
Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.
-
Howard Y. Chang, MD, PhD
Virginia and D. K. Ludwig Professor of Cancer Research, Professor of Genetics and, by courtesy, of Pathology
Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.
-
Katrin Chua
Professor of Medicine (Endocrinology, Gerontology and Metabolism)
Current Research and Scholarly InterestsOur lab is interested in understanding molecular processes that underlie aging and age-associated pathologies in mammals. We focus on a family of genes, the SIRTs, which regulate stress resistance and lifespan in lower organisms such as yeast, worms, and flies. In mammals, we recently uncovered a number of ways in which SIRT factors may contribute to cellular and organismal aging by regulating resistance to various forms of stress. We have now begun to characterize the molecular mechanisms by which these SIRT factors function. In particular, we are interested in how SIRT factors regulate chromatin, the molecular structure in which the DNA of mammalian genomes is packaged, and how such functions may link genome maintenance to stress resistance and aging.
-
Michael F. Clarke, M.D.
Karel H. and Avice N. Beekhuis Professor of Cancer Biology
Current Research and Scholarly InterestsDr. Clarke maintains a laboratory focused on two areas of research: i) the control of self-renewal of normal stem cells and diseases such as cancer and hereditary diseases; and ii) the identification and characterization of cancer stem cells. His laboratory is investigating how perturbations of stem cell regulatory machinery contributes to human disease. In particular, the laboratory is investigating epigenetic regulators of self renewal, the process by which stem cells regenerate themselves.
-
Michael Cleary
Lindhard Family Professor of Pediatric Cancer Biology and Professor of Pathology, Emeritus
Current Research and Scholarly InterestsThe role of oncoproteins in cancer and development; molecular and cellular biology of hematologic malignancies; targeted molecular therapies of cancer.
-
Gerald Crabtree
David Korn, MD, Professor of Pathology and Professor of Developmental Biology
Current Research and Scholarly InterestsChromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin and epigenetic regulation in living cells.
-
Tushar Desai
Professor of Medicine (Pulmonary, Allergy and Critical Care Medicine)
Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Hunter Fraser
Professor of Biology
Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.
Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. -
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Margaret T. Fuller
Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.
-
Xiaojing Gao
Assistant Professor of Chemical Engineering
Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.
-
Charles Gawad
Associate Professor of Pediatrics (Hematology/Oncology)
BioOur lab works at the interface of biotechnology, computational biology, cellular biology, and clinical medicine to develop and apply new tools for characterizing genetic variation across single cells within a tissue with unparalleled sensitivity and accuracy. We are focused on applying these technologies to study cancer clonal evolution while patients are undergoing treatment with the aim of identifying cancer clonotypes that are associated with resistance to specific drugs so as to better understand and predict treatment response. We are also applying these methods to understand how more virulent pathogens emerge from a population of bacteria or viruses with an emphasis on developing a deeper understanding of how antibiotic resistance develops.
-
Andrew Gentles
Associate Professor (Research) of Pathology, of Medicine (BMIR) and, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsComputational systems biology
-
Or Gozani
Dr. Morris Herzstein Professor
Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.
-
William Greenleaf
Professor of Genetics
Current Research and Scholarly InterestsOur lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.
-
Daniel Herschlag
Professor of Biochemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.
-
Andrew R. Hoffman
Professor of Medicine (Endocrinology), Emeritus
Current Research and Scholarly InterestsMechanism of genomic imprinting of insulin like growth factor-2 and other genes.Long range chromatin interactions Role of histone modifications and DNA methylation in gene expression.
-
Peter K. Jackson
Professor of Microbiology and Immunology (Baxter Labs) and of Pathology
Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .
-
Siddhartha Jaiswal
Associate Professor of Pathology
Current Research and Scholarly InterestsWe identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.
-
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Livnat Jerby
Assistant Professor of Genetics
Current Research and Scholarly InterestsImmune responses are highly orchestrated processes that span various interconnected regulatory modalities within and across cells. My lab develops high-throughput, quantitative, engineering-based, approaches to dissect multicellular immune dynamics at unprecedented scale, resolution, and depth, and identify new immunomodulating interventions at an accelerated pace.
-
Hanlee P. Ji
Professor of Medicine (Oncology) and, by courtesy of Electrical Engineering
Current Research and Scholarly InterestsCancer genomics and genetics, translational applications of next generation sequencing technologies, development of molecular signatures as prognostic and predictive biomarkers in oncology, primary genomic and proteomic technology development, cancer rearrangements, genome sequencing, big data analysis
-
Paul A. Khavari, MD, PhD
Carl J. Herzog Professor of Dermatology in the School of Medicine
Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.
-
Seung K. Kim M.D., Ph.D.
KM Mulberry Professor, Professor of Developmental Biology, of Medicine (Endocrinology) and, by courtesy, of Pediatrics (Endocrinology)
Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.
-
Mark Krasnow
Paul and Mildred Berg Professor
Current Research and Scholarly Interests- Lung development and stem cells
- Neural circuits of breathing and speaking
- Lung diseases including lung cancer
- New genetic model organism for biology, behavior, health and conservation -
Calvin Kuo
Maureen Lyles D'Ambrogio Professor
Current Research and Scholarly InterestsWe study cancer biology, intestinal stem cells (ISC), and angiogenesis. We use primary organoid cultures of diverse tissues and tumor biopsies for immunotherapy modeling, oncogene functional screening and stem cell biology. Angiogenesis projects include blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. ISC projects apply organoid culture and ko mice to injury-inducible vs homeostatic stem cells and symmetric division mechanisms.
-
David Kurtz
Assistant Professor of Medicine (Oncology)
On Partial Leave from 05/01/2024 To 04/30/2025Current Research and Scholarly InterestsImplementation of noninvasive detection of malignancies in the clinic remains difficult due to both technical and clinical challenges. These include necessary improvements in sensitivity and specificity of biomarkers, as well as demonstration of clinical utility of these assays. My research focuses on technical development and implementation of assays to detect and track cancers in order to facilitate personalized disease management.
-
Jin Billy Li
Professor of Genetics
Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.
-
Joseph (Joe) Lipsick
Professor of Pathology and of Genetics
On Partial Leave from 10/01/2024 To 12/31/2024Current Research and Scholarly InterestsFunction and evolution of the Myb oncogene family; function and evolution of E2F transcriptional regulators and RB tumor suppressors; epigenetic regulation of chromatin and chromosomes; cancer genetics.
-
Kyle Loh
Assistant Professor of Developmental Biology (Stem Cell)
BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel cells in a Petri dish from embryonic stem cells. Each of these human cells could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to developmental and stem cell biology, we have an emerging interest in exploring deadly biosafety level 4 viruses together with our collaborators.
Kyle attended the County College of Morris and Rutgers, and received his Ph.D. from Stanford (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship. -
Sydney X. Lu
Assistant Professor of Medicine (Hematology)
BioSydney Lu is an assistant professor and physician-scientist in the Division of Hematology, Department of Medicine with a broad interest in both normal and abnormal RNA processing in the context of normal physiology and disease states. The laboratory studies translational questions regarding the mechanistic basis of RNA processing abnormalities in malignant blood disorders, their implications for leukemogenesis and cancer biology, as well as resultant therapeutic opportunities.
As a physician, Sydney’s group is particularly focused on dissecting RNA processing abnormalities in primary patient samples and disease-relevant preclinical model systems. Lab members employ a variety of ‘wet-lab’ and computational approaches to study transcriptome abnormalities in (1) states of immune dysfunction, (2) myeloid blood cancers such as myelodysplastic syndromes and acute myeloid leukemia, and (3) lymphoid blood cancers such as chronic lymphocytic leukemia. Additional projects are focused on novel therapeutics, including multiple targeted agents which modulate RNA processing, for the selective treatment of these diseases.
Sydney’s research is/has been supposed by grant funding from the National Cancer Institute, Parker Institute for Cancer Immunotherapy, Leukemia & Lymphoma Society, Aplastic Anemia & Myelodysplastic Syndromes International Foundation, the American Society for Clinical Oncology, the American Society of Hematology, the American Association for Cancer Research, the Paula and Rodger Riney Foundation, the Doris Duke Charitable Foundation, The Gabrielles Angel Foundation for Cancer Research, and the Stanford Cancer Institute. -
Ravi Majeti MD, PhD
Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia and D. K. Ludwig Professor and Professor of Medicine (Hematology/Stem Cell Institute)
Current Research and Scholarly InterestsThe Majeti lab focuses on the molecular/genomic characterization and therapeutic targeting of leukemia stem cells in human hematologic malignancies, particularly acute myeloid leukemia (AML). Our lab uses experimental hematology methods, stem cell assays, genome editing, and bioinformatics to define and investigate drivers of leukemia stem cell behavior. As part of these studies, we have led the development and application of robust xenotransplantation assays for human hematopoietic cells.
-
M. Peter Marinkovich, MD
Associate Professor of Dermatology
Current Research and Scholarly InterestsThe Marinkovich lab studies the function of epithelial extracellular matrix molecules, including integrins, collagens and laminins in epithelial development and carcinoma progression. We apply our discoveries in this area towards development of molecular therapies for carcinomas, hair disease and inherited epithelial adhesive disorders.
-
William Nelson
Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine, Emeritus
Current Research and Scholarly InterestsOur research objectives are to understand the cellular mechanisms involved in the development and maintenance of epithelial cell polarity. Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs.
-
Roeland Nusse
Virginia and Daniel K. Ludwig Professor of Cancer Research
Current Research and Scholarly InterestsOur laboratory studies Wnt signaling in development and disease. We found recently that Wnt proteins are unusual growth factors, because they are lipid-modified. We discovered that Wnt proteins promote the proliferation of stem cells of various origins. Current work is directed at understanding how Wnt signals lead to the proliferation of stem cells and on understanding Wnt signaling during repair and regeneration after tissue injury.
-
Lucy Erin O'Brien
Associate Professor of Molecular and Cellular Physiology
Current Research and Scholarly InterestsMany adult organs tune their functional capacity to variable levels of physiologic demand. Adaptive organ resizing breaks the allometry of the body plan that was established during development, suggesting that it occurs through different mechanisms. Emerging evidence points to stem cells as key players in these mechanisms. We use the Drosophila midgut, a stem-cell based organ analogous to the vertebrate small intestine, as a simple model to uncover the rules that govern adaptive remodeling.
-
Anthony Oro, MD, PhD
Eugene and Gloria Bauer Professor
Current Research and Scholarly InterestsOur lab uses the skin to answer questions about epithelial stem cell biology, differentiation and carcinogenesis using genomics, genetics, and cell biological techniques. We have studied how hedgehog signaling regulates regeneration and skin cancer, and how tumors evolve to develop resistance. We study the mechanisms of early human skin development using human embryonic stem cells. These fundamentals studies provide a greater understanding of epithelial biology and novel disease therapeutics.
-
Donna Peehl, PhD
Professor (Research) of Urology, Emerita
Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.