School of Medicine
Showing 1-10 of 123 Results
-
Steven Artandi, MD, PhD
Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry
Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.
-
Onn Brandman
Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.
-
Patrick O. Brown
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsDr. Brown's research focuses on replacing humanity's most destructive invention - the use of animals as a food technology - by developing a new and better way to produce the world's most delicious, nutritious and affordable meats, fish and dairy foods directly from plants. He is also working on developing and scaling optimal methods for restoring healthy ecosystems and sequestering carbon on the 45% of Earth's surface that have been devastated by animal agriculture.
-
Douglas L. Brutlag
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsMy primary interest is to understand the flow of information from the genome to the phenotype of an organism. This interest includes predicting the structure and function of genes and proteins from their primary sequence, predicting function from structure simulating protein folding and ligand docking, and predicitng disease from genome variations. These goals are the same as the goals of molecular biology, however, we use primarily computational approaches.