School of Medicine
Showing 1-50 of 123 Results
-
Steven Artandi, MD, PhD
Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry
Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.
-
Onn Brandman
Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.
-
Patrick O. Brown
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsDr. Brown's research focuses on replacing humanity's most destructive invention - the use of animals as a food technology - by developing a new and better way to produce the world's most delicious, nutritious and affordable meats, fish and dairy foods directly from plants. He is also working on developing and scaling optimal methods for restoring healthy ecosystems and sequestering carbon on the 45% of Earth's surface that have been devastated by animal agriculture.
-
Douglas L. Brutlag
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsMy primary interest is to understand the flow of information from the genome to the phenotype of an organism. This interest includes predicting the structure and function of genes and proteins from their primary sequence, predicting function from structure simulating protein folding and ligand docking, and predicitng disease from genome variations. These goals are the same as the goals of molecular biology, however, we use primarily computational approaches.
-
Stephen Chang, MD, PhD
Instructor, Biochemistry
Instructor, Biochemistry
Instructor, Medicine - Cardiovascular MedicineBioPrior to a career in medicine, Dr. Chang was an English major and subsequent novelist at night. During the days, he taught literature part-time at Rutgers University, and for extra money, worked in a laboratory in NYC washing test tubes. Inspired by his laboratory mentor, he began volunteering at the hospital next door, and developed a love for interacting with patients. Through this experience, he saw how caring for others could form deep bonds between people - even strangers - and connect us in a way that brings grandeur to ordinary life.
In addition to seeing patients, Dr. Chang is a physician-scientist devoted to advancing the field of cardiovascular medicine. His research has been focused on identifying a new genetic organism that better models human heart disease than the mouse. For this purpose, he has been studying the mouse lemur, the smallest non-human primate, performing cardiovascular phenotyping (vital signs, ECG, echocardiogram) on lemurs both in-bred (in France) and in the wild (in Madagascar) to try to identify mutant cardiac traits that may be heritable - and in the process, characterize the first high-throughput primate model of human cardiac disease. -
Gilbert Chu
Professor of Medicine (Oncology) and of Biochemistry
Current Research and Scholarly InterestsAfter shuttering the wet lab, we have focused on: a point-of-care device to measure blood ammonia and prevent brain damage; a human protein complex that juxtaposes and joins DNA ends for repair and V(D)J recombination; and strategies for teaching students and for reducing selection bias in educational programs.
-
Karlene Cimprich
Professor of Chemical and Systems Biology and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.
-
Rhiju Das
Professor of Biochemistry
Current Research and Scholarly InterestsOur lab seeks an agile and predictive understanding of how nucleic acids and proteins code for information processing in living systems. We develop new computational & chemical tools to enable the precise modeling, regulation, and design of RNA and RNA/protein machines.
-
RonaldĀ W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Rahim Esfandyarpour
Student, Biochemistry - Genome Center
BioRahim Esfandyarpour received his M.Sc. and Ph.D. in Electrical Engineering from Stanford University in 2010 and 2014 respectively.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Alex Gao
Assistant Professor of Biochemistry
Current Research and Scholarly InterestsNature has created many powerful biomolecules that are hidden in organisms across kingdoms of life. Many of these biomolecules originate from microbes, which contain the most diverse gene pool among living organisms. We are integrating high-throughput computational and experimental approaches to harness the vast diversity of genes in microbes to develop new antibiotics and molecular biotechnology, and to investigate the evolution of proteins and molecular mechanisms in innate immunity.
-
Yingjie Guo
Postdoctoral Fellow, Biochemistry
BioProfessional Education
Doctor of Philosophy, Chinese Academy Of Sciences (2023)
Doctor, Institute of Zoology, Chinese Academy of Sciences, Regenerative medicine -
Pehr Harbury
Associate Professor of Biochemistry
Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.
-
Daniel Herschlag
Professor of Biochemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.
-
Sharada Kalanidhi
Director of Data Science, Biochemistry - Genome Center
Current Role at StanfordSharada is focused on building a Data Science capability at SGTC. Her recent research has involved multivariate and machine learning analysis of the biological mechanisms underlying ME/CFS and post-viral fatigue. Her previous research involved non-parametric analysis of the use of Aripiprazole as a treatment for ME/CFS.
-
Danish Khan
Postdoctoral Scholar, Biochemistry
BioDanish is an accomplished researcher who has been working as a postdoctoral research associate at Prof. Onn Brandman's Lab at the Department of Biochemistry for approximately 3.5 years. His primary area of research revolves around unraveling the intricate mechanisms of eukaryotic protein quality control and stress response pathways. Danish's scientific journey at Stanford began as a post-doc under the supervision of Prof. Georgios Skiniotis where he worked briefly before joining Prof. Onn Brandman's group, motivated by his strong interest in investigating ribosome-associated quality control (RQC) pathways and the fascinating phenomenon of "CAT tails," which involves the addition of amino acids to a protein without an mRNA template.
Motivated by a desire to comprehend how defects in RQC pathways contribute to the development of neurodegenerative diseases in humans, Danish aspires to develop therapeutic interventions for these conditions. Within the Brandman lab, Danish has achieved many accomplishments: he has a first author preview published in Journal of Cell Biology, a second author paper in the eLife journal and a middle author publication in Nature Communications. Currently, Danish is working on two manuscripts that disclose novel and groundbreaking findings concerning the determinants and consequences of CAT tailing in eukaryotes. At Stanford, Danish was awarded the Dean's Fellowship (Bernard Cohen Post Doctoral Fellowship Fund) and Mikitani Cancer Research Fellowship.
Prior to his time at Stanford, Danish earned his PhD from Texas A&M University at College Station, TX. During his doctoral studies, he delved into the chemical inhibition of a lipid signaling protein, leading to the discovery of a remarkable heme-binding lipid transfer protein. Danish's exceptional work during his graduate school tenure resulted in the publication of three first-author papers in renowned journals such as eLife, Cell Chemical Biology, and the Journal of Lipid Research. Additionally, he made valuable contributions as a middle author to five additional papers. Danish's incredible productivity at Texas A&M was recognized by the 'John Mack Prescott Award For Outstanding Research'.
Danish's academic journey commenced with a Bachelor's degree in Biochemistry from Presidency College, Kolkata (University of Calcutta), India where he ranked second in college and fourth in university. He then obtained his Master's degree in Biotechnology from Banaras Hindu University in India on Government of India's DBT Fellowship having obtained an All India Rank of 94. Outside of his scientific pursuits, Danish harbors an interest in law and the intersection between law and technology, often immersing himself in related literature. -
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.