School of Medicine


Showing 701-750 of 804 Results

  • Katrin J Svensson

    Katrin J Svensson

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsMolecular metabolism
    Protein biochemistry
    Cell biology and function
    Animal physiology

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.

  • Ali Bin Syed

    Ali Bin Syed

    Clinical Assistant Professor, Radiology - Pediatric Radiology

    BioDr. Syed is a member of the divisions of Pediatric Radiology and Body MRI. His clinical interests include MR imaging of pediatric and adult hepatobiliary disorders, inflammatory bowel disease, gynecologic pathology, and congenital heart disease. He is also an active researcher, collaborating with fellow engineers and scientists at Stanford to translate technical innovations in MRI into improved patient care. His recent work focuses on rapid, motion-robust MRI in children and adults.

  • Karl G. Sylvester

    Karl G. Sylvester

    Professor of Surgery (Pediatric Surgery)

    Current Research and Scholarly InterestsScholarly interests include investigation of molecular markers of human disease that provide diagnostic function, serve as targets for possible therapeutic manipulation, or provide insight into mechanisms of human disease. Specific diseases of interest include common conditions of pregnancy, gut microbial ecology and Necrotizing Enterocolitis (NEC).

  • Daniel Sze, MD, PhD

    Daniel Sze, MD, PhD

    Professor of Radiology (Interventional Radiology)

    Current Research and Scholarly InterestsTransarterial administration of chemotherapeutics, radioactive microspheres, and biologics for the treatment of unresectable tumors; management of portal hypertension and complications of cirrhosis (TIPS); treatment of complications of organ transplantation; Venous and pulmonary arterial thrombolysis and reconstruction; Stent and Stent-graft treatment of peripheral vascular diseases, aneurysms, aortic dissections

  • William Talbot

    William Talbot

    Professor of Developmental Biology

    Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • Jean Y. Tang MD PhD

    Jean Y. Tang MD PhD

    Professor of Dermatology

    Current Research and Scholarly InterestsMy research focuses on 2 main areas:

    1. Skin cancer:
    - New therapeutics to treat and prevent non-melanoma skin cancer, especially by targeting the Hedgehog signaling pathway for BCC tumors
    - Genomic analysis of drug-resistant cancers
    - Identifying risk factors for skin cancer in the Women's Health Initiative

    2. Epidermolysis Bullosa: gene therapy and protein therapy to replace defective/absent Collagen 7 in children and adults with Recessive Dystrophic EB

  • Peter Tass

    Peter Tass

    Professor of Neurosurgery

    BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.

  • Joyce Teng, MD, PhD

    Joyce Teng, MD, PhD

    Professor of Dermatology and, by courtesy, of Pediatrics
    On Partial Leave from 06/06/2022 To 07/15/2022

    BioJoyce Teng, MD, PhD is a professor in dermatology at Stanford University. She is affiliated with multiple hospitals in the area, including Lucile Salter Packard Children's Hospital (LPCH) at Stanford and Stanford Hospital and Clinics (SHC). She received her medical degree from Vanderbilt University School of Medicine and has been in practice for more than 12 years. She is one of the 6 pediatric dermatologists practicing at LPCH and one of 72 at SHC who specialize in Dermatology. She sees patients with rare genetic disorders, birthmarks, vascular anomalies and a variety of inflammatory skin diseases. She is also an experienced pediatric dermatological surgeon. Her research interests are drug discovery and novel therapy for skin disorders.

  • Avnesh Thakor

    Avnesh Thakor

    Assistant Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsOver the past decade there has been tremendous advances in the field of Interventional Oncology with the clinical utilization of multiple new innovative locoregional therapies (i.e. chemoembolization, percutaneous ablation).

    Looking forward, our ability to super-selectively deliver new therapies directly to target organs. These therapies include nanoparticles, stem cells and gene therapy and will open new pathways into the emerging field of Interventional Regenerative Medicine.

  • Suzanne Tharin

    Suzanne Tharin

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Margo Thienemann

    Margo Thienemann

    Clinical Professor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development

    Current Research and Scholarly InterestsPediatric Acute-Onset Neuropsychiatric Disorder

  • Reena Thomas, MD PhD

    Reena Thomas, MD PhD

    Clinical Associate Professor, Neurology & Neurological Sciences
    Clinical Associate Professor (By courtesy), Neurosurgery

    Current Research and Scholarly Interests-Neuro Oncology Immunotherapy
    -Health Equity
    -Medical Education

  • Robert Tibshirani

    Robert Tibshirani

    Professor of Biomedical Data Science and of Statistics

    Current Research and Scholarly InterestsMy research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.

  • Seda Tierney

    Seda Tierney

    Associate Professor of Pediatrics (Cardiology)

    Current Research and Scholarly InterestsAssessment of vascular health in children by non-invasive modalities

    Exercise interventions in children with congenital and acquired heart disease

    Use of telehealth to deliver interventions to children with congenital and acquired heart disease

    Parentally-acquired echocardiograms

    Quality Improvement in Pediatric Echocardiography

    Echocardiography and outcomes in congenital heart disease

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from enzyme engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational analysis.

  • Florencia Torche

    Florencia Torche

    Professor of Sociology

    BioFlorencia Torche is a social scientist with expertise in social demography and social stratification. Professor Torche’s scholarship examines inequality dynamics including intergenerational mobility, disparities in educational attainment, family dynamics, and assortative mating, among others. Her research also examines the influence of early-life exposures –starting before birth– on iindividual wellbeing and inequality. She was elected to the National Academy of Sciences and the American Academy of Arts and Sciences in 2020, and to the Sociological Research Association in 2013.

    Torche has led many large data collection projects, including the first national survey on social mobility in Chile and Mexico. She has served as deputy editor of the American Sociological Review (2020-2022 and 2015-2018), Consulting Editor of the American Journal of Sociology, and Editorial Board of the Journal of Health and Social Behavior, Social Forces, Sociology of Education, and Sociological Theory among others. She has served on the Board of Overseers of the General Social Survey.

    Professor Torche holds a BA from the Catholic University of Chile and an MA and PhD in Sociology from Columbia University.

  • Natalie Torok

    Natalie Torok

    Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly InterestsOur laboratory has been focusing on the mechanism of liver fibrosis and the role of hepatocyte cell death in fibrogenic injury. We have demonstrated the intricate link between hepatocyte apoptosis, generation of apoptotic bodies and their efferocytosis by stellate cells triggering fibrogenic activation. Key to this was the activation of the NADPH oxidase NOX2 and production of reactive oxidative species inducing stellate cell transdifferentiation and collagen I transcription. We have expanded our work focusing on the role of non-phagocytic NOX4 in dysregulating insulin responses and precipitating ER and mitochondrial stress signaling in non-alcoholic steatohepatitis. We are particularly interested in clinical conditions that are linked to accelerated fibrosis such as during aging and T2DM. Our other major focus is on alcoholic hepatitis, and defining novel therapeutic targets based on sterile inflammatory pathways. Our ultimate goal is translation and developing new treatment approaches that reverse fibrosis and improve patient outcomes.

  • Katherine Travis

    Katherine Travis

    Assistant Professor (Research) of Pediatrics (Developmental-Behavioral Pediatrics)

    BioDr. Katherine Travis is an Assistant Professor in the Division of Developmental-Behavioral Pediatrics at Stanford University. Dr. Travis obtained her Ph.D. in Neuroscience from the University of California San Diego. Dr. Travis came to Stanford as a postdoctoral fellow to obtain training in clinical neuroscience and translational approaches to intervention. As part of her training, she was awarded a K99/R00 Pathway to Independence grant from the National Institutes of Health.

    Her research uses human neuroimaging and behavioral measures to examine the neural bases of early language learning in infants and young children. The goal of her research is to develop therapies and interventions to help promote language learning outcomes in children at-risk for learning disabilities. Currently, she directs an NIH-funded clinical trial that will use diffusion MRI to assess whether there are changes in brain structure following a language intervention in the Neonatal Intensive Care Unit for preterm infants.

  • Jennifer Tremmel

    Jennifer Tremmel

    Susan P. and Riley P. Bechtel Medical Director and Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsDr. Tremmel studies sex differences in cardiovascular disease. Current research projects include evaluating sex differences in coronary pathophysiology, young patients presenting with myocardial infarction, the impact of stress on anginal symptoms, chronic total coronary occlusions, and vascular access site complications.

  • Philip S. Tsao, PhD

    Philip S. Tsao, PhD

    Professor (Research) of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsOur primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.

  • Chi-Ho Ban Tsui

    Chi-Ho Ban Tsui

    Professor of Anesthesiology, Perioperative and Pain Medicine (Adult-MSD)

    BioDr. Tsui completed his medical training at Dalhousie University, Halifax, in 1995 after obtaining his Masters of Science in Pharmacy in 1991. These degrees followed a Diploma in Engineering and Bachelors of Science in both Mathematics and Pharmacy. Dr. Tsui completed his anesthesia residency training at the University of Alberta Hospital in Edmonton in 2000, and he received further experience in pediatric anesthesia at British Columbia Children's Hospital in Vancouver. After 16 years of practice at the University of Alberta Hospital and Stollery Children’s Hospital, Dr. Tsui was recruited to Stanford University in 2016.

    Currently, Dr. Tsui is a University Medical Line Professor in the Department of Anesthesiology, Perioperative, and Pain Medicine at Stanford University. In his position as an adult and pediatric anesthesiologist at the Stanford University Medical Center and the Lucile Packard Children’s Hospital, he specializes in regional anesthesia techniques.

    Dr. Tsui is an avid and internationally recognized researcher in many areas of regional anesthesia. During his residency, Dr. Tsui developed an interest in improving the accuracy of epidural catheter placement and was issued a U.S. patent in relation to his research. Dr. Tsui has expanded his research into the use of ultrasound in regional anesthesia, with particular relevance to peripheral nerve block performance. Dr. Tsui is also responsible for development of the E-Catheter catheter-over-needle kit for use during peripheral nerve blocks. The primary objective of his research is to transform regional anesthesia from an “art” into a reliable and reproducible “science” by further exploring the basic scientific and clinical aspects of electrophysiological signal monitoring and integrating this with the latest advances in ultrasound.

    Dr. Tsui has received the Alberta Heritage Foundation for Medical Research (AHFMR) Clinical Scholar award and has previously received research awards and grants from the Canadian Institutes of Health Research (CIHR), Canadian Anesthesiologists’ Society, AHFMR, and University of Alberta. In 2015, a prestigious award, the CAS Research Recognition Award, was presented by the Canadian Anesthesiologists’ Society to Dr. Tsui "in recognition of significant research contributions to regional anesthesia, acute pain management and pediatric anesthesia in Canada and around the world". In 2022, the American Society of Regional Anesthesia and Pain Medicine (ASRA) awarded Dr. Tsui, the Distinguish Service Award. This prestigious annual award has been presented to honor persons who have made remarkable contributions to the field of regional anesthesia and pain medicine.

  • Alexander Eckehart Urban

    Alexander Eckehart Urban

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics
    On Leave from 10/01/2021 To 08/31/2022

    Current Research and Scholarly InterestsComplex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.

  • PJ Utz

    PJ Utz

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsThe long-term research goal of the Utz laboratory is to understand autoimmunity, autoantibodies, and how tolerance is broken and can be reestablished.

  • Tulio Valdez, MD, MSc

    Tulio Valdez, MD, MSc

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    BioDr. Tulio A Valdez is a surgeon scientist born and raised in Colombia with a subspecialty interest in Pediatric Otolaryngology. He attended medical school at Universidad Javeriana in Bogota Colombia before undertaking his residency in Otolaryngology, Head and Neck Surgery in Boston. He completed his Pediatric Otolaryngology Fellowship at Texas Children’s Hospital (2007), Houston and obtained his Master’s in Clinical and Translational Research at the University of Connecticut.

    Clinically, Dr. Valdez has an interest in airway surgery and swallowing disorders. He has a special interest in the management of sinus disease in cystic fibrosis. Dr. Valdez has co-authored one textbook and numerous book chapters and scientific manuscripts. Dr. Valdez continues his clinical research in these areas, particularly with a focus on aerodigestive disorders.

    Scientifically, Dr. Valdez has developed various imaging methods to diagnose otitis media and cholesteatoma a middle ear condition that can lead to hearing loss. He was part of the Laser Biomedical Research Center at Massachusetts Institute of Technology. His research includes novel imaging modalities to better diagnose ear infections one of the most common pediatric problems. His research has now expanded to include better intraoperative imaging modalities in pediatric patients to improve surgical outcomes without the need for radiation exposure. 

    Dr. Valdez believes in the multi-disciplinary collaborations to tackle medical problems and has co-invented various medical devices and surgical simulation models.

  • Matt van de Rijn

    Matt van de Rijn

    Sabine Kohler, MD, Professor of Pathology

    Current Research and Scholarly InterestsOur research focuses on molecular analysis of human soft tissue tumors (sarcomas) with an emphasis on leiomyosarcoma and desmoid tumors. In addition we study the role of macrophages in range of malignant tumors.

  • Keith Van Haren, MD

    Keith Van Haren, MD

    Assistant Professor of Neurology and of Pediatrics

    Current Research and Scholarly InterestsOur research group is dedicated to innovating care for children with degenerative brain disorders. We are particularly focused on genetic and autoimmune disorders that cause damage to the myelin (the fatty insulation around the nerves) of the brain and spinal cord. X-linked adrenoleukodystrophy (genetic) and multiple sclerosis (autoimmune) are the prototypical examples of degenerative disorders of myelin and are the two disorders we study most intensively.

  • Krisa Van Meurs

    Krisa Van Meurs

    Rosemarie Hess Professor, Emerita

    Current Research and Scholarly InterestsMy research interests include persistent pulmonary hypertension of the newborn, hypoxic respiratory failure, inhaled nitric oxide therapy, ECMO, congenital diaphragmatic hernia, neonatal clinical trials, and the use of aEEG and NIRS to detect brain injury.

  • Capucine van Rechem

    Capucine van Rechem

    Assistant Professor of Pathology (Pathology Research)

    Current Research and Scholarly InterestsMy long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis.

  • Shreyas Vasanawala, MD/PhD

    Shreyas Vasanawala, MD/PhD

    William R. Brody Professor of Pediatric Radiology and Child Health

    Current Research and Scholarly InterestsOur group is focused on developing new fast and quantitative MRI techniques.

  • Anne Villeneuve

    Anne Villeneuve

    Professor of Developmental Biology and of Genetics

    Current Research and Scholarly InterestsMechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.

  • David Vu

    David Vu

    Instructor, Pediatrics - Infectious Diseases

    BioDr. Vu is a pediatric infectious diseases specialist who is researching human responses to dengue virus and malaria infections. He performed his undergraduate studies at the University of California, San Diego, and obtained his medical doctorate at the University of Pennsylvania School of Medicine. He trained in general pediatrics at UCSF Benioff Children's Hospital Oakland, and in pediatric infectious diseases at Emory University School of Medicine. His present studies on pediatric dengue and malaria co-infection are supported by an NIAID Career Development Award (K23 AI127909) and a Instructor K Award Support Program Award from the Maternal & Child Health Research Institute and Department of Pediatrics.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.

  • Rebecca D. Walker

    Rebecca D. Walker

    Clinical Associate Professor, Emergency Medicine

    Current Research and Scholarly InterestsInterests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration

  • Dennis Wall

    Dennis Wall

    Professor of Pediatrics (Systems Medicine), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease

  • James Wall

    James Wall

    Associate Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsHealth Technology Innovation

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.