School of Medicine


Showing 21-40 of 49 Results

  • Michael Jeng

    Michael Jeng

    Professor of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsResearch interests focus on: 1) histiocytic disorders, such as Langerhans cell histiocytosis (LCH) and hemophagocytic lymphohistiocytosis (HLH), and 2) vascular anomalies and malformations.

  • Norman J. Lacayo, MD

    Norman J. Lacayo, MD

    Associate Professor of Pediatrics (Hematology and Oncology)

    Current Research and Scholarly InterestsPediatric Hematology/Oncology, Phase I drug studies for refractory and relapsed leukemia; genomic studies, biologic risk-stratification and treatment of acute myeloid leukemia; prediction or induction response and risk of relapse using phosphoproteomics in childhood AML; novel MRD techniques in childhood ALL.

  • Michael Link

    Michael Link

    Lydia J. Lee Professor of Pediatric Cancer

    Current Research and Scholarly InterestsHematology/Oncology, treatment of sarcomas of bone and soft tissue, biology of acute lymphoblastic leukemias, treatment of non-Hodgkin's lymphoma and Hodgkin's disease.

  • Clara Lo

    Clara Lo

    Clinical Professor, Pediatrics - Hematology & Oncology

    Current Research and Scholarly InterestsResearch interests include:
    Biomarkers and targeted therapy in pediatric immune thrombocytopenia
    Transfusion-related iron overload
    Hemophilia and other rare bleeding disorders
    Thrombophilia

  • Adrienne H. Long, MD, PhD

    Adrienne H. Long, MD, PhD

    Instructor, Pediatrics - Hematology & Oncology

    BioAdrienne H. Long, MD, PhD is an Instructor and Physician-Scientist in the Division of Pediatric Hematology and Oncology at the Lucile Packard Children's Hospital, Stanford. Clinically, she completed her MD at Northwestern University, her pediatrics residency at Boston Children’s Hospital, and her oncology fellowship training at Stanford University. Dr. Long sees patients with leukemias/lymphomas, and has a clinical interest in T cell malignancies.

    Dr. Long received her PhD in Microbiology/Immunology through a National Institutes of Health (NIH) – Northwestern University partnership, where she worked with Dr. Crystall Mackall to advance CAR T cell therapies. Her influential thesis work was the first to identify T cell exhaustion as a critical factor limiting efficacy of CAR therapies (Long et al., Nature Medicine, 2015). She continued her research training with Dr. Nicholas Haining at the Dana Farber Cancer Institute during residency and is currently conducting her post-doctoral research with Dr. Mark Davis at Stanford.

    Dr. Long’s research interests lie at the intersection of the immune system and cancer therapies. She is currently studying how thymic selection, designed to prevent auto-immunity, may also inhibit anti-tumor immunity in children. She is also interested in how immunotherapies that have revolutionized how we treat cancer can impact the developing pediatric immune system long term.

  • Crystal Mackall

    Crystal Mackall

    Ernest and Amelia Gallo Family Professor and Professor of Pediatrics and of Medicine

    Current Research and Scholarly InterestsRecent clinical studies, by us and others, have demonstrated that genetically engineered T cells can eradicate cancers resistant to all other therapies. We are identifying new targets for these therapeutics, exploring pathways of resistance to current cell therapies and creating next generation platforms to overcome therapeutic resistance. We have discovered novel insights into the biology of human T cell exhaustion and developed approaches to prevent and reverse this phenomenon.

  • Allison Pribnow

    Allison Pribnow

    Clinical Assistant Professor, Pediatrics - Hematology & Oncology

    Current Research and Scholarly InterestsSolid Tumors, Bone Sarcomas, Global Oncology, Health Disparities

  • Sneha Ramakrishna

    Sneha Ramakrishna

    Assistant Professor of Pediatrics (Hematology/Oncology)

    BioSneha Ramakrishna obtained her B. A. from the University of Chicago and her M.D. from the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. In medical school, through the Howard Hughes Medical Research Scholar Award, she joined Dr. Crystal Mackall’s laboratory, where she designed and developed various GD2 CAR-Ts and tested them in preclinical models. During her residency training in Pediatrics at the Children’s Hospital of Philadelphia, she cared for some of the first patients treated with CD19 CAR T cells, learning the power of this therapy first-hand. During her fellowship in Pediatric Hematology/Oncology at the Johns Hopkins/National Cancer Institute combined program, she worked with Dr. Terry Fry. She evaluated the mechanism of CD22 CAR T cell relapse in patients by developing an antigen escape model and establishing a deeper understanding of the effects of antigen density on CAR-T phenotype, expansion, and persistence (Fry…Ramakrishna…Mackall Nat Med, 2018; Ramakrishna, et al., Clinical Cancer Research, 2019). Since arriving at Stanford, Dr. Ramakrishna leads an interdisciplinary team that designs, develops, and successfully implements a robust correlative science platform for our novel CAR-T therapies. Analyzing patient samples from our first-in-human GD2 CAR-T trial (NCT04196413) treating a universally fatal cancer, diffuse midline glioma (DMG), we identified that intracerebroventricular CAR-T administration correlates with enhanced pro-inflammatory cytokines and reduced immunosuppressive cell populations in cerebrospinal fluid as compared to intravenous CAR-T administration (Majzner*, Ramakrishna*, et al., Nature 2022 *co-first authors). Her research program evaluates unique sets of patient samples using novel single-cell immune profiling to identify the drivers of CAR-T success or failure. Building on these findings, her team assesses approaches to enhance CAR-T efficacy and translate these findings to the clinic.

    Clinically, Dr. Ramakrishna cares for children with solid tumors and treats hematologic, solid, and brain tumor pediatric patients with CAR T cell therapies in the Cancer Cellular Therapies program.

  • Raya Saab

    Raya Saab

    Lindhard Family Professor of Pediatric Cancer Biology

    BioOur laboratory focuses on investigating molecular mechanisms of oncogene-induced tumorigenesis and tumor suppressor pathways, and oncogenic signaling in the pediatric solid tumor rhabdomyosarcoma. Our earlier work identified the tumor suppressors p53 and p18Ink4c as inhibitors of Cyclin D1-driven tumorigenesis in a pineoblastoma model, through senescence induction, and highlighted distinct roles for the the RB and p53 pathways in induction and maintenance of oncogene-induced senescence. We also identified CDK2 as a potential target for inducing senescence in premalignant lesions to inhibit tumor progression.
    Our current focus is on studying oncogenic signaling and tumor suppression in the childhood tumor rhabdomyosarcoma, to identify key mediators of invasion and metastasis, which is the most common cause of treatment failure clinically. We use preclinical in vitro and in vivo models, including murine and human cell lines, and mouse models of disease.
    We have recently uncovered a paracrine role for rhabdomyosarcoma-secreted exosomes in impacting biology of stromal cells. Rhabdomyosarcoma-derived exosomes carry specific miRNA cargo that imparts an invasive and migratory phenotype on normal recipient fibroblasts, and proteomic analysis revealed specific and unique pathways relevant to the two different molecular rhabdomyosarcoma subtypes that are driven by distinct oncogenic pathways. We identified that the driver oncogene in fusion-positive rhabdomyosarcoma, PAX3-FOXO1, modulates exosome cargo to promote invasion, migration, and angiogenic properties, and identified specific microRNA and protein cargo acting as effectors of PAX3-FOXO1 exosome-mediated signaling, including modulation of oxidative stress response and cell survival signaling.
    Our ongoing work is focused on interrogating specific paracrine signaling pathways and molecular mechanisms of metastatic disease progression in rhabdomyosarcoma, for potential therapeutic targeting.

  • Julien Sage

    Julien Sage

    Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics

    Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.

  • Kathleen M. Sakamoto

    Kathleen M. Sakamoto

    Shelagh Galligan Professor in the School of Medicine

    Current Research and Scholarly InterestsMy research focuses on the molecular pathways that regulate normal and aberrant blood cell development, including acute leukemia and bone marrow failure syndromes. We are also studying novel drugs for treatment of cancer.

  • Liora Schultz

    Liora Schultz

    Clinical Associate Professor, Pediatrics - Hematology & Oncology

    BioI am currently postdoctoral research fellow pursuing immunotherapy research in the oncology department at Stanford University. My clinical training as a pediatric hematology oncology fellow at Memorial Sloan Kettering Cancer Center highlighted the desperate need for novel therapeutic options for a subtype of aggressive pediatric leukemia, Acute Myeloid Leukemia (AML). Despite our best standard of care for AML, long term survival rates range from 50-60% with an unacceptably high relapse rate of 40%. The urgent need for novel treatments inspired me to pursue a research project in adoptive immunotherapy, genetically modifying Tcells to express artificial T cell receptors, termed chimeric antigen receptors (CARs), that target AML specific antigens. In parallel to my clinical training, I constructed an AML specific CAR and demonstrated its ability to redirect T cell function mediating eradication of AML cells. As the field of CAR therapy rapidly advances, novel methods to optimize this therapeutic modality are imperative. To this end, supported by research demonstrating superior antitumor function of naïve derived effector T cells compared to central memory derived effector T cells, I am investigating whether preferential modification of naïve T cells to express CARs will generate a T cell subpopulation with increased efficacy. Consolidating my clinical and research experiences within highly academic institutes allows me to synthesize my pursuit of scientific rigor and commitment to the field of oncology, with a mission to achieve productive research and translatable results.