School of Medicine


Showing 101-164 of 164 Results

  • Vasiliki Rahimzadeh

    Vasiliki Rahimzadeh

    Member, Maternal & Child Health Research Institute (MCHRI)

    BioVasiliki (Vaso) Rahimzadeh, PhD is an applied bioethics scholar with research interests at the intersection of precision medicine, data governance and public policy.

  • Mahalakshmi Ramamurthy

    Mahalakshmi Ramamurthy

    Postdoctoral Scholar, Developmental Behavioral Pediatrics

    BioI am a postdoctoral scholar working with Dr. Jason Yeatman. With a background in vision science, psychophysics and developmental cognitive neuroscience my long-term goal is to study the intersection of basic visual mechanisms and various neurodevelopmental disorders and to extend this understanding in creating effective early screening tools, and in advancing evidence-based therapeutic and remediation programs. Inherent to this interest is the need for developmental data in large and demographically diverse populations. I strongly believe that such inclusive research not only contributes to scientific advancements but can go beyond to bridge health and education disparities.

  • Rameshwar (Ram) Rao MD PhD

    Rameshwar (Ram) Rao MD PhD

    Postdoctoral Medical Fellow, Hematology-Oncology
    Fellow in Graduate Medical Education

    BioMy scientific training spans over a decade of published research in the fields of vascularized bone tissue engineering, biomineralization, gene therapy, and spectral ultrasound. I earned my BS from UC Davis and MS/PhD in Biomedical Engineering at the University of Michigan. I have aimed to form highly collaborative and multidisciplinary research groups at each level of training. This work has resulted in 21 publications, award-winning manuscripts, and multiple national conference research awards. My successful research career began during my undergraduate studies where my work in Prof. Kent Leach’s lab resulted in 3 publications and the Department of Biomedical Engineering Outstanding Undergraduate Research Award. My graduate thesis under the guidance of Prof. Jan Stegemann resulted in 12 publications (7 as first author) in high quality, peer-reviewed journals in the fields of engineering and biotechnology. My graduate studies were funded by an NIH T32 Training grant and the NSF Graduate Research Fellowship. My graduate work culminated in the 2013 Outstanding PhD Research Award from the Society for Biomaterials (SFB) and the 2013 Outstanding Student Award from the Tissue Engineering and Regenerative Medicine Society (TERMIS). Recognizing the gap in translation of bioengineering research into clinical practice, I opted to pursue an MD at the University of Michigan to become the physician-scientist that identifies clinical problems, engineers the solution, and delivers it back to the patient to advance treatments and improve survival outcomes. My success continued through medical school with 4 clinical research manuscripts and Graduation with Distinction in Research, awarded to 10% of the class.

    In the next phase of my training, I will complete my fellowship in Pediatric Hematology/Oncology at Stanford through the Accelerated Research Pathway by the American Board of Pediatrics. Prof. Sarah Heilshorn, Associate Chair of Materials Science at Stanford, will be my primary research and career development mentor. Together, we have designed an innovative approach targeting the extracellular matrix to improve survival outcomes in pediatric osteosarcoma.

  • Kat Adams Shannon

    Kat Adams Shannon

    Postdoctoral Scholar, Psychology

    BioKat studies how young children adapt their attention and learning behaviors to best match different early environments, with particular focus on understanding variability and strengths in contexts of early adversity. A key aim of her research is to create and collaborate on innovative uses of technology and statistical methods to support education and developmental science.

  • Sushruta Surappa

    Sushruta Surappa

    Postdoctoral Scholar, Radiology

    BioSushruta Surappa is a postdoctoral researcher at the Canary Center for Early Cancer Detection at Stanford University. His current research focuses on developing various MEMS-based tools for the separation and capture of extracellular vesicles for medical diagnostics. Sushruta received his MS (‘15) and PhD (‘21) degrees in Mechanical Engineering from Georgia Institute of Technology, where he developed a new class of nonlinear MEMS transducers with applications in wireless power transfer, sensing and energy harvesting. He is passionate about developing low-cost, miniature technologies for medical diagnostics and is a keen proponent of science communication.

  • Xiwei She

    Xiwei She

    Postdoctoral Scholar, Neurology and Neurological Sciences

    BioDr. Xiwei She is a postdoctoral scholar in the Department of Neurology. He received his B.S. degree in Computer Science from Shanghai Jiao Tong University in 2013, and his M.S. degree in Biomedical Engineering from Zhejiang University in 2016. Worked as a research assistant at the USC Neural Modeling and Interface Laboratory, he received his Ph.D. degree in Biomedical Engineering from the University of Southern California in 2022. After graduation, he joined Stanford University as a postdoctoral scholar at the Pediatric Neurostimulation Laboratory (Baumer Lab) and Wu Tsai Neuroscience Institute.
    His research interests are largely directed toward identifying the causal relationship of neurons/brain regions and understanding how information is encoded in neural signals by employing machine learning models. Specifically, his postdoc research focuses on applying machine learning modeling techniques on EEG and TMS-EEG data to better understand the impact of interictal epileptiform discharges (IEDs) on brain activity in children with childhood epilepsy with centrotemporal spikes (CECTS).

  • Benjamin Singer

    Benjamin Singer

    Postdoctoral Scholar, Infectious Diseases

    BioBen Singer is a postdoctoral scholar with interests in mathematical epidemiology and global public health. Ben's research career began with an internship at the Okinawa Institute of Science and Technology, where he applied quantitative skills he had learnt studying physics at the University of Oxford to the study of nematode locomotion. Ben further pursued quantitative methods in life sciences in the Interdisciplinary Bioscience Doctoral Training Partnership at the University of Oxford, earning a DPhil (PhD equivalent) in mathematical methods for evaluating pandemic risk and control. During these studies he maintained an interest in global public health policy, interning with the UK government's Department for International Development, where he developed models of international COVID-19 vaccine distribution. Ben is now working in Nathan Lo's research group at Stanford, creating infectious disease models informing public health policy for schistosomiasis, hepatitis E, and other infections.

  • Ashley Styczynski

    Ashley Styczynski

    Adjunct Clinical Assistant Professor, Medicine - Infectious Diseases

    BioAshley Styczynski, MD, MPH, is an Adjunct Clinical Assistant Professor in the Division of Infectious Diseases & Geographic Medicine and Global Health Faculty Fellow, and a Medical Officer in the International Infection and Control Program at the Centers for Disease Control and Prevention (CDC). Dr. Styczynski's research interests are in infectious disease epidemiology, global health, emerging infections, and antimicrobial resistance. She holds an MPH from Johns Hopkins Bloomberg School of Public Health and an MD from University of Illinois at Chicago. Prior to coming to Stanford for her infectious disease fellowship, she spent two years as an Epidemic Intelligence Service (EIS) Officer at the CDC. During her time as an EIS officer, Dr. Styczynski conducted outbreak investigations on Zika virus, vaccinia virus, and rabies. She is currently conducting research on antimicrobial resistance and interventions to reduce nosocomial infections within low-resource healthcare facilities.

  • Diana Tordoff

    Diana Tordoff

    Postdoctoral Scholar, Nephrology

    BioDiana M. Tordoff, PhD, MPH is a postdoctoral scholar with The PRIDE Study (pridestudy.org) at the Stanford School of Medicine. She is an epidemiologist whose research focuses on LGBTQ+ health equity. Prior to joining The PRIDE Study, Diana was awarded an NIH Kirschstein National Research Service Fellowship for her doctoral dissertation, which examined the heterogeneity in HIV/STI prevalence, testing, and PrEP use among transgender and non-binary people and their partners in the US. Her interests include barriers and facilitators of healthcare access for LGBTQ+ communities, sexual and reproductive health, molecular epidemiology, the vaginal microbiome, and community-engaged research methods.

  • Themistoklis Tsarouchas

    Themistoklis Tsarouchas

    Postdoctoral Scholar, Psychiatry

    BioThemis completed his PhD at the Centre for Discovery Brain Sciences of the University of Edinburgh in Scotland under Prof Catherina Becker, with focus on the contribution of the innate immune system during regeneration of the zebrafish spinal cord. As a postdoctoral researcher with Prof Anna Williams at the Centre for Regenerative Medicine in Edinburgh he worked on the molecular mechanisms that regulate the differentiation and functional maturation of human oligodendrocytes. Over the last few years, he worked on several projects focused on the identification of genes that regulate the axonal regeneration of spinal cord after injury and the differentiation of human oligodendrocyte progenitor cells into myelin producing oligodendrocytes. As a member in the Gibson lab, Themis aims to identify molecular regulators of the circadian clock and how tuning the circadian system affects the maturation and function of oligodendrocytes in health and disease.

  • Allison Vreeland

    Allison Vreeland

    Clinical Instructor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development
    Postdoctoral Scholar, Psychiatry

    BioDr. Allison Vreeland (she/her) is a licensed clinical psychologist specializing in working with children, teens, and families. Dr. Vreeland received her PhD in Clinical Psychological Science with a minor in Quantitative Studies at Vanderbilt University. She completed her predoctoral clinical internship in Child Psychology at UCSF with specialty training through the Child Trauma Research Program. She completed a research and clinical fellowship in the Immune Behavioral Health Clinic at Stanford University, where she focused her research efforts on examining neurological markers of patients diagnosed with pediatric acute neuropsychiatric syndrome (PANS). Clinically, Dr. Vreeland’s program of clinical care is focused on the delivery of evidence-based clinical interventions for individuals with anxiety, OCD, PANS/PANDAS, mood disorders, and behavioral challenges.

  • Bing Wang

    Bing Wang

    Postdoctoral Scholar, Stem Cell Transplantation

    BioMy academic training and research experience have equipped me with multidisciplinary skills and knowledge of molecular biology and immunology.

    I led two projects when I was an undergraduate, in which I got primary academic learning. My team member and I investigated the bacteria content in drinking water from two types of machines that are commonly used in colleges under the guidance of our experimental microbiology teacher Zhihong Zhong. Secondly, we produced a hybridoma cell line secreting monoclonal antibody against the core antigen of the hepatitis C virus (HCV) to develop an ELISA kit for the detection of HCV under the guidance of Dr. Rushi Liu and Minjing Liao.

    Thereafter, as a Ph. D. candidate at Xiaoming Feng’s lab, my research primarily focused on understanding the biology of regulatory T cells (Treg) and CD11c+ myeloid cells using cutting-edge single-cell sequencing and conditional knockout mice under healthy and disease conditions. We first revealed the heterogeneity and bifurcated differentiation pathway of human Tregs from normal donors and transplanted patients at the single-cell transcriptome level. A subsequent first and corresponding author publication identified a key innate responsive protein in CD11c+ alveolar macrophages, NRP2, that protects mice from lung injury via promoting the phagocytosis of neutrophils. I also participated in two projects regarding the role of a serine/threonine kinase, LKB1, in mice CD11c+ dendritic cells from lymphoid tissues and adipose tissue with diet-induced obesity. These academic experiences guided me into a strong passion and independent capacities for biomedical studies.

    For my postdoctoral training, I will focus on developing Treg therapies and genetic stem cell therapy to cure patients with IPEX syndrome (a severe autoimmune disease) at preclinical and clinical stages, and other immune disorders. My sponsor Dr. Rosa Bacchetta is a well-known leader in treating IPEX patients and developing Treg therapies. My co-mentor Dr. Maria Grazia Roncarolo is a well-recognized pediatric immunologist and also one of the pioneers in the stem cell and gene therapy field, who discovered the type 1 regulatory T cells or Tr1 cells and translate the scientific discoveries into novel Treg therapies. Both of them have an excellent record of training postdoctoral fellows. The proposed projects will provide me with great opportunities in cutting-edge technology and translational research and outline a set of career development including grant writing, public presentation, and lab management, which will enhance my ability to become an independent investigator and help me to reach my goal of developing efficient and safe Treg therapies for a wide range of immune disorders and associated human diseases.

  • Jinglong Wang

    Jinglong Wang

    Postdoctoral Scholar, Radiation Biology

    BioDr. Wang was trained at the Jacques Monod Institute and École Normale Supérieure in Paris, France under the mentorship of Dr. Terence Strick. and obtained his Ph.D. degree from the University of Paris in 2019. He dissected the molecular machinery of human and bacterial NHEJ, and interrogated the mechanism of SpCas9 tolerance to non-specific substrate using single-molecule nanomanipulation tools.
    Jinglong’s research in the Frock Lab focuses on DSB-related chromosome topological changes and genomic interactions.

  • Wenjun Wang

    Wenjun Wang

    Postdoctoral Scholar, Stem Cell Transplantation

    Current Research and Scholarly InterestsMy postdoctoral research focuses on investigating novel therapy for childhood leukemias.

  • Alexis Thomas Weiner

    Alexis Thomas Weiner

    Postdoctoral Scholar, Pathology

    Current Research and Scholarly InterestsThe planar cell polarity (PCP) signaling pathway polarizes animal cells along an axis parallel to the tissue plane, and in so doing generates long-range organization that can span entire tissues. Although its core proteins and much about their interactions are known, how PCP signaling occurs at a mechanistic level remains fundamentally mysterious. In my current project I will employ novel genetic methods to dissect the logic underlying how cellular asymmetry arises at a molecular level.

  • Jian Xiong

    Jian Xiong

    Postdoctoral Scholar, Chemical Engineering

    BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.

  • Hao Yan

    Hao Yan

    Postdoctoral Scholar, Bone Marrow Transplantation

    BioAs a highly motivated researcher with a passion for conducting basic research that has direct implications for patient care, I have completed my Ph.D. training in physiology in China and pursued postdoctoral training in the United States. My academic training and research experience have provided me with an excellent background in multiple biological disciplines including developmental biology, gerontology, immunology, and pre-clinic research. As a doctoral student with Dr. Guoliang Xia, I focused on mammalian ovary development and aging with the goal of improving the in-vitro fertilization process for cancer patients and women over 40, and aimed to uncover the mechanisms that control the non-renewable oocyte activation and slow down its quantity and quality loss during aging.
    During my Ph.D. training, I became interested in immunology research, inspired by my involvement in a project on maternal-fetal immunotolerance. In naturally conceived pregnancies, the fetus is semi-allogeneic to the mother, and the maternal immune system is exposed to foreign HLA antigens from the child. However, the fetus is well-tolerated within a specific time window. As a postdoctoral fellow at Stanford University, I joined the lab of Dr. Robert Negrin, a renowned leader in the bone marrow transplantation (BMT)/GVHD field, to explore immunotolerance-related issues such as graft-versus-host disease and blood malignancies.

  • Chongyang Zhang

    Chongyang Zhang

    Postdoctoral Scholar, Cardiology

    BioDr. Zhang is a Postdoctoral Scholar at RabLab in the cardiopulmonary division. She has a PhD in Pharmacology from University of Rochester, NY. She has research in cardiovascular research and chronobiology published in high impact peer-reviewed journals. She is recipient of honors including predoctoral fellowship from AHA, Travel Grant for Early Career Investigators from Council on Arteriosclerosis, Thrombosis, and Vascular Biology. She has served as ad hoc reviewer for more than 40 manuscripts for reputed journals.

  • Jiayuan Zhao

    Jiayuan Zhao

    Postdoctoral Scholar, Psychiatry

    BioDr. Jiayuan(Lyrid) Zhao is a clinical psychologist and a postdoctoral scholar for the Stanford Neurodiversity Project.

  • Moss Zhao

    Moss Zhao

    Instructor, Neurosurgery

    BioDr. Moss Zhao is an Instructor at Department of Neurosurgery, Stanford University. He develops cutting-edge and clinically viable imaging technologies to improve the diagnosis and treatment of cerebrovascular diseases across the lifespan. His specific areas of expertise include physiological modeling, arterial spin labeling, Bayesian inference, PET/MRI, and artificial intelligence. His scientific contributions could significantly improve the early detection of strokes and dementia as well as enrich the knowledge of brain development in the first two decades of life.

    Dr. Zhao received his DPhil at St Cross College of University of Oxford under the supervision of Prof. Michael Chappell. As an alumni mentor, he supports the career development of students of his alma mater. Since 2016, he has presented his work to more than 3000 delegates at international conferences and held leadership positions in professional societies. His research and teaching are supported by the American Heart Association, the National Institutes of Health, and the European Cooperation in Science and Technology.

  • Quan Zhou

    Quan Zhou

    Instructor, Neurosurgery

    Current Research and Scholarly InterestsCurrent Research Focus: molecular targeted theranostic imaging of brain tumor and enhanced drug delivery

    Areas of Insterests: molecular imaging, theranostics, fluorescence-guided surgery, brain tumor, drug delivery

    Dr. Zhou has made substantial contributions to the growing biomedical research field of Molecular Imaging. Molecular imaging emerged in the mid twentieth century as a highly specialized discipline at the intersection of molecular biology and in vivo imaging, focusing on imaging molecules of medical interest within intact living subjects. Dr. Zhou’s research addresses some of the nation’s most pressing issues related to the development of effective approaches for accurate detection of human diseases and improving their treatment outcome. Her innovations in molecular imaging technology enables the visualization, characterization, and quantification of biologic processes taking place at the cellular and subcellular levels. The multiple and numerous potentialities of Quan’s work are applicable to the diagnosis of diseases such as cancer, neurological and cardiovascular diseases. Her strong education background in biological sciences and biomedical engineering followed by postdoctoral training in translational and clinical research have helped her develop multiple disease-specific molecular probes and imaging strategies for early cancer diagnosis, image-guided surgery, therapeutic delivery prediction and at-risk cardiovascular plaque detection. Her research also contributes to improving the treatment of these disorders by testing and optimizing the execution of new interventions. Her work is expected to have a major economic impact due to earlier disease detection and personalized therapy.

    Dr. Zhou’s research has led to emergence of novel solutions and opportunities, in particular, for molecular imaging of cancer and other diseases, for discovering, leveraging and integration of cancer biomarker and tumor microenvironment information, and for novel approaches to acquire real-time high-resolution contrast enhanced visualization of tumor margin and optimization based on imaging depth, quality and speed. Dr. Zhou has been able to formulate the involved clinical and biological problems into biomedical engineering frameworks and find ways to exploit a variety of modern techniques and approaches from photoacoustic imaging, fluorescence-guided surgery, micro-electromechanical systems and therapeutic delivery strategies in developing elegant and effective solutions. Her work in the Neurosurgery Department and Molecular Imaging Program at Stanford involves research related to developing tumor-specific molecular probes, advanced imaging methods and therapeutic delivery systems for adult and pediatric patients with malignant brain cancers to improve margin detection, enhance resection accuracy, and improve treatment outcome.