School of Medicine
Showing 51-100 of 133 Results
-
Steven Higginbottom
Director of Gnotobiotics, Microbiology and Immunology
Current Role at StanfordMaintain and operate Gnotobiotic research facility.
-
Michael R. Howitt
Assistant Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsOur lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.
-
KC Huang
Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsHow do cells determine their shape and grow?
How do molecules inside cells get to the right place at the right time?
Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations. -
Juliana Idoyaga
Assistant Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe Idoyaga Lab is focused on the function and biology of dendritic cells, which are specialized antigen-presenting cells that initiate and modulate our body’s immune responses. Considering their importance in orchestrating the quality and quantity of immune responses, dendritic cells are an indisputable target for vaccines and therapies.
Dendritic cells are not one cell type, but a network of cells comprised of many subsets or subpopulations with distinct developmental pathways and tissue localization. It is becoming apparent that each dendritic cell subset is different in its capacity to induce and modulate specific types of immune responses; however, there is still a lack of resolution and deep understanding of dendritic cell subset functional specialization. This gap in knowledge is an impediment for the rational design of immune interventions. Our research program focuses on advancing our understanding of mouse and human dendritic cell subsets, revealing their endowed capacity to induce distinct types of immune responses, and designing novel strategies to exploit them for vaccines and therapies. -
Peter K. Jackson
Professor of Microbiology and Immunology (Baxter Labs) and of Pathology
Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease -
Prasanna Jagannathan
Assistant Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology
BioI am an Infectious Diseases physician-scientist with a research program in human immunology of malaria and clinical trials of immune modulatory interventions. Our group has been conducting detailed longitudinal cohort studies in children and pregnant women in order to study how repeated malaria shapes the cellular immune response. We are also studying how malaria control interventions such as antimalarial chemoprevention and vector control shape the acquisition and/or maintenance of protective immunity to malaria. We have expanded this work to not only include studying the mechanisms driving naturally acquired immunity to malaria, but other infectious diseases, including SARS CoV-2. We have also lead and/or participated in studies evaluating therapeutic strategies for patients with mild to moderate COVID-19.
-
Samantha M Kerath
Director of Finance and Administration, Microbiology and Immunology
Current Role at StanfordDirector of Finance & Administration
Microbiology & Immunology and Baxter Lab -
Karla Kirkegaard
Violetta L. Horton Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.
-
Holden Maecker
Professor (Research) of Microbiology and Immunology
Current Research and Scholarly InterestsI'm interested in immune monitoring of T cell responses to chronic pathogens and cancer, and the correlation of T cell response signatures with disease protection.
-
AC Matin
Professor of Microbiology and Immunology, Emeritus
Current Research and Scholarly Interests1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.
-
David McIlwain
Sr Res Scientist-Basic Life, Microbiology and Immunology - Baxter Labs
BioDr. McIlwain studies host-response to infectious disease using high dimensional single-cell and spatial proteomics tools. He trained for his Ph.D. at the University of Toronto exploring mouse biology using reverse genetics with renowned immunologist Dr. Tak W. Mak. His doctoral work yielded insights into alternative mRNA splicing and an important discovery about iRhom2 as a new factor controlling the production of inflammatory mediator TNF. As a post-doctoral fellow, Dr. McIlwain investigated host response to viral infection in animal models at the University of Dusseldorf in Germany before moving to Stanford University where along with Dr. Garry Nolan, he leads a team executing research contracted by the FDA’s medical countermeasures initiative to study emerging pathogens. This work includes mass cytometry (CyTOF) and spatial proteomic (CODEX) single-cell analysis of human and animal model influenza, Ebola, zika, and SARS-CoVs infections.
-
Edward Mocarski
Professor of Microbiology and Immunology, Emeritus
Current Research and Scholarly InterestsMy research interests focused on the biology and pathogenesis of cytomegalovirus (CMV), an opportunistic pathogen that causes significant disease worldwide, reporting discoveries in areas of CMV gene regulation, DNA replication and packaging, maturation, impact on the host cell, disease pathogenesis, latency and reactivation, host cell death signaling and chemokine system. In the last 20 years of my academic career, we studied viral cell death suppressors and discovered ZBP1-RIPK3 necroptosis.
-
Denise M. Monack
Martha Meier Weiland Professor in the School of Medicine
Current Research and Scholarly InterestsThe primary focus of my research is to understand the genetic and molecular mechanisms of intracellular bacterial pathogenesis. We use several model systems to study complex host-pathogen interactions in the gut and in immune cells such as macrophages and dendritic cells. Ultimately we would like to understand how Salmonella persists within certain hosts for years in the face of a robust immune response.
-
Elena Monti
Postdoctoral Scholar, Microbiology and Immunology
BioMy research during my PhD focused on the human neuromuscular system adaptations in response to overloading (training), unloading, aging and disease (specifically, cancer cachexia).
To date, during my postdoc, I am working on the effects of the enzyme 15-PGDH on the neuromuscular system health/connection in young and aged animals. -
Matthew Raymond Olm
Postdoctoral Scholar, Microbiology and Immunology
BioI am a bioinformatician and microbiologist interested in studying the human microbiome and fine-scale microbial population genetics. See my personal website for more info- https://mrolm.github.io/
-
Peter Parham
Professor of Structural Biology and, by courtesy, of Microbiology and Immunology
Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.
-
Charles G. Prober, MD
Professor of Pediatrics (Infectious Diseases) and, by courtesy, of Microbiology and Immunology
Current Research and Scholarly InterestsMy research interest is in the epidemiology, pathophysiology, prevention, and treatment of infections in children. Much of this research has focused on viral infections, especially those caused by herpes simplex virus (HSV). I have conducted a number of studies concerned with the epidemiology of HSV-2 infections in pregnant women, their partners, and neonates.
-
David A. Relman
Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsMy investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.