School of Medicine


Showing 11-20 of 24 Results

  • Everett Meyer

    Everett Meyer

    Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy), of Pediatrics (Stem Cell Transplantation) and, by courtesy, of Surgery (Abdominal Transplantation)

    Current Research and Scholarly InterestsResearch focus in T cell immunotherapy and T cell immune monitoring using high-throughput sequencing and genomic approaches, with an emphasis on hematopoietic stem cell transplantation, the treatment of graft-versus-host disease and immune tolerance induction.

  • Robertson Parkman

    Robertson Parkman

    Adjunct Professor, Pediatrics - Stem Cell Transplantation

    BioMy principal research interests have been the assessment of the immunological consequences of hematopoietic stem cell transplantation including both acute and chronic graft versus host disease and immune reconstitution and the use of hematopoietic stem cell transplantation to treat genetic diseases. My laboratory was the first to suggest that chronic graft versus host disease was an autoimmune disease directed at histocompatibility antigens shared by donors and recipients. The observation leaded to the assessment of the role of thymic dysfunction in the pathogenesis of chronic graft versus host disease. As a pediatric immunologist I have investigated the role of hematopoietic stem cell transplantation initially in the treatment of primary immune deficiency diseases and later the treatment of metabolic diseases, which lead to my involvement in the early gene transfer clinical trials.

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

  • Maria Grazia Roncarolo

    Maria Grazia Roncarolo

    George D. Smith Professor of Stem Cell and Regenerative Medicine and Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy)

    Current Research and Scholarly InterestsResearch Interests
    Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses

    Clinical Interests
    Primary Immunodeficiencies
    Monogenic Autoimmune Disorders
    Allogenic Bone Marrow Transplantation
    Gene Therapy Clinical Trials
    Cell Therapy Clinical Trials
    Clinical Trials in Autoimmune Diseases and Organ Transplantation
    Clinical Trials in Hemoglobinopathies

  • Chris Severyn

    Chris Severyn

    Instructor, Pediatrics - Stem Cell Transplantation

    Current Research and Scholarly InterestsMy current research focuses on the influence of the microbiome on clinical outcomes in the pediatric oncology, hematology, and bone marrow transplant populations.

  • Ami J. Shah

    Ami J. Shah

    Clinical Professor, Pediatrics - Stem Cell Transplantation

    BioI joined Stanford University in 2015 as a Clinical Professor of Pediatrics in the Division of Hematology/ Oncology, Stem Cell Transplantation and Regenerative Medicine, having completed my training in Pediatric Hematology/ Oncology at Childrens Hospital Los Angeles. My areas of clinical expertise have been in the areas of transplantation for immune deficiencies and immune reconstitution post HSCT. I have been actively involved with the care and treatment of children with primary immune deficiencies and work with the Primary Immune Deficiencies Consortium (PIDTC). I am very interested in cellular therapies as a treatment modality for rare genetic diseases. I currently am the PI for several gene therapy trials at Stanford for various disorders including cerebral adrenoleukodystrophy (cALD), Sickle Cell Anemia, Thalassemia and Pyruvate Kinase Deficiency. My other main areas of research have been in studying the late effects of patients following stem cell transplantation, in specific the neurocognitive function post HSCT. I have been involved with several national committees addressing the late effects of HSCT within the ASBMT and COG.

    In addition to my research work in stem cell transplantation, I have been actively involved with mentorship and graduate medical education. I am currently the Program Director for the Hematology/ Oncology Fellowship and serve as a mentor through the Pediatric Mentoring Group.

  • Judith Shizuru

    Judith Shizuru

    Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy) and of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsTransplantation of defined populations of allogeneic hematopoietic cells. Specifically, the way in which hematopoietic cell grafts alter antigen specific immune responses to allo-, auto- and viral antigens. The cellular and molecular basis of resistance to engraftment of allogeneic hematopoietic stem cells.

  • Sriram Vaidyanathan

    Sriram Vaidyanathan

    Instructor, Pediatrics - Stem Cell Transplantation

    BioI am a postdoctoral scholar working with Dr. Matthew Porteus. Gene therapy has been my primary research interest during my doctoral and postdoctoral training. As a doctoral student, I studied the intracellular transport of non-viral gene delivery vectors to optimize delivery. I joined the Porteus lab to further my interest in gene therapy by applying CRISPR/Cas9 based genome editing for monogenic diseases. As a postdoctoral scholar, I have been working on using CRISPR/Cas9 technology to develop an autologous gene corrected airway stem cell therapy to treat cystic fibrosis.