School of Medicine


Showing 11-20 of 44 Results

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center)

    BioDr. Demirci is currently a Professor at Stanford University School of Medicine with tenure at the Canary Center for Early Cancer Detection. Prior to his Stanford appointment, he was an Associate Professor of Medicine at Brigham and Women's Hospital, Harvard Medical School and at Harvard-MIT Division of Health Sciences and Technology serving at the Division of Biomedical Engineering, Division of Infectious Diseases and Renal Division. He leads a group of 20+ researchers focusing on micro- and nano-scale technologies. He received his B.S. degree in Electrical Engineering in 1999 as a James B. Angell Scholar (summa cum laude) from University of Michigan, Ann Arbor. He received his M.S. degree in 2001 in Electrical Engineering, M.S. degree in Management Science and Engineering in 2005, and Ph.D. in Electrical Engineering in 2005, all from Stanford University.

    The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in applying micro- and nanoscale technologies to problems in medicine at the interface between micro/nanoscale engineering and medicine. Our goal is to apply innovative technologies to clinical problems. Our major research theme focuses on creating new microfluidic technology platforms targeting broad applications in medicine. In this interdisciplinary space at the convergence of engineering, biology and materials science, we create novel technologies for disposable point-of-care (POC) diagnostics and monitoring of infectious diseases, cancer and controlling cellular microenvironment in nanoliter droplets for biopreservation and microscale tissue engineering applications. These applications are unified around our expertise to test the limits of cell manipulation by establishing microfluidic platforms to provide solutions to real world problems at the clinic.

    Our lab creates technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. Dr. Demirci has published over 120 peer reviewed publications in journals including PNAS, Nature Communications, Advanced Materials, Small, Trends in Biotechnology, Chemical Society Reviews and Lab-chip, over 150 conference abstracts and proceedings, 10+ book chapters, and an edited book. His work was highlighted in Wired Magazine, Nature Photonics, Nature Medicine, MIT Technology Review, Reuters Health News, Science Daily, AIP News, BioTechniques, and Biophotonics. He is fellow-elect of the American Institute of Biological and Medical Engineering (AIMBE, 2017). His scientific work has been recognized by numerous national and international awards including the NSF Faculty Early Career Development (CAREER) Award (2012), the IEEE-EMBS Early Career Achievement Award (2012), Scientist of the year award from Stanford radiology Department (2017). He was selected as one of the world’s top 35 young innovators under the age of 35 (TR-35) by the MIT Technology Review at the age of 28. In 2004, he led a team that won the Stanford University Entrepreneur’s Challenge Competition and Global Start-up Competition in Singapore. His work has been translated to start-up companies including DxNow, KOEK Biotechnology and LEVITAS. There has been over 10,000 live births in the US, Europe and Turkey using the sperm selection technology that came out of Dr. Demirci's lab. He has been cited over 3000 times within the last two years (H index, 68).

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Gary Glover

    Gary Glover

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering

    Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.

  • Edward Graves

    Edward Graves

    Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsApplications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.

  • Brian A. Hargreaves

    Brian A. Hargreaves

    Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications and augmented reality applications in medicine. These include abdominal, breast and musculoskeletal imaging, which require development of faster, quantitative, and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools and augmented reality in medicine.

  • Robert Herfkens

    Robert Herfkens

    Professor of Radiology (Cardiovascular Imaging), Emeritus

    Current Research and Scholarly InterestsImaging of cardiovascular diseases with CT, magnetic resonance imaging and spectroscopy

  • Andrei Iagaru

    Andrei Iagaru

    Professor of Radiology (Nuclear Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsCurrent research projects include:
    1) PET/MRI and PET/CT for Early Cancer Detection
    2) Targeted Radionuclide Therapy
    3) Clinical Translation of Novel PET Radiopharmaceuticals;

  • Debra M. Ikeda, M.D.

    Debra M. Ikeda, M.D.

    Professor of Radiology (Breast Imaging)

    Current Research and Scholarly InterestsMy research interests are mammography positioning, tomosynthesis (DBT) cancer detection and diagnosis, MRI, DWI, MRI-guided breast biopsy, breast cancer recurrence, tattoo/ fiducial/wire localization of axillary lymph nodes, breast cancer and FDG PET-CT imaging, artifical intelligence/deep learning, breast density, density notification legislation, COVID-19 effects on Breast Imaging Centers and personnel

  • Aya Kamaya, MD

    Aya Kamaya, MD

    Associate Professor of Radiology (Body Imaging) at the Stanford University Medical Center

    Current Research and Scholarly InterestsHepatobiliary imaging
    Hepatocellular carcinoma
    Urologic imaging
    Gynecologic imaging
    Thyroid imaging
    Novel ultrasound technologies
    Perfusion CT imaging of abdominal tumors