School of Medicine


Showing 11-20 of 60 Results

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Millie Das

    Millie Das

    Clinical Professor, Medicine - Oncology

    BioDr. Das specializes in the treatment of thoracic malignancies. She sees and treats patients both at the Stanford Cancer Center and at the Palo Alto VA Hospital. She is Chief of Oncology at the Palo Alto VA and is an active member of the VA national Lung Cancer Working Group and Lung Cancer Precision Oncology Program. In 2023, she was elected President the Association of Northern California Oncologists (ANCO), where she displays her passion for patient advocacy and also for clinician education by helping to organize Bay Area focused continuing medical education programs. She is the VA site director for the Stanford fellowship program and leads the VA thoracic tumor board on a biweekly basis. She has a strong interest in clinical research, serving as a principal investigator for multiple clinical and translational studies at the Palo Alto VA, and also as a co-investigator on all of the lung cancer trials at Stanford. In her free time, she enjoys spending time with her family, traveling, and running.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Alice C. Fan

    Alice C. Fan

    Assistant Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • George A. Fisher Jr.

    George A. Fisher Jr.

    Colleen Haas Chair in the School of Medicine

    Current Research and Scholarly InterestsClinical expertise in GI cancers with research which emphasizes Phase I and II clinical trials of novel therapies but also includes translational studies including biomarkers, molecular imaging, tumor immunology and development of immunotherapeutic trials.

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Kristen N Ganjoo

    Kristen N Ganjoo

    Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsGiant cell tumor of the bone
    Gastrointestinal stromal tumors
    Soft tissue sarcoma
    Osteosarcoma

  • Nathanael S. Gray

    Nathanael S. Gray

    Krishnan-Shah Family Professor

    BioNathanael Gray is the Krishnan-Shah Family Professor of Chemical and Systems Biology at Stanford, Co-Director of Cancer Drug Discovery Co-Leader of the Cancer Therapeutics Research Program, Member of Chem-H, and Program Leader for Small Molecule Drug Discovery for the Innovative Medicines Accelerator (IMA). His research utilizes the tools of synthetic chemistry, protein biochemistry, and cancer biology to discover and validate new strategies for the inhibition of anti-cancer targets. Dr. Gray’s research has had broad impact in the areas of kinase inhibitor design and in circumventing drug resistance.
    Dr. Gray received his PhD in organic chemistry from the University of California at Berkeley in 1999 after receiving his BS degree with the highest honor award from the same institution in 1995. After completing his PhD, Dr. Gray was recruited to the newly established Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, California. During his six year stay at GNF, Dr. Gray became the director of biological chemistry where he supervised a group of over fifty researchers integrating chemical, biological and pharmacological approaches towards the development of new experimental drugs. Some of the notable accomplishments of Dr. Gray’s team at GNF include: discovery of the first allosteric inhibitors of wild-type and mutant forms of BCR-ABL which resulted in clinical development of ABL001; discovery of the first selective inhibitors of the Anaplastic Lymphoma Kinase (ALK), an achievement that led to the development of now FDA-approved drugs such as ceritinib (LDK378) for the treatment of EML4-ALK expressing non-small cell lung cancer (NSCLC); and discovery that sphingosine-1-phosphate receptor-1 (S1P1) is the pharmacologically relevant target of the immunosuppressant drug Fingomilod (FTY720) followed by the development of Siponimod (BAF312), which is currently used for the treatment of multiple sclerosis.
    In 2006, Dr. Gray returned to academia as a faculty member at the Dana Farber Cancer Institute and Harvard Medical School in Boston. There, he has established a discovery chemistry group that focuses on developing first-in-class inhibitors for newly emerging biological targets, including resistant alleles of existing targets, as well as inhibitors of well-validated targets, such as Her3 and RAS, that have previously been considered recalcitrant to small molecule drug development. Dr. Gray’s team developed covalent inhibitors of the T790M mutant of EGFR inspired the development of Osimertinib (AZD9291), now FDA approved for treatment of patients with relapsed lung cancer due to resistance to first generation EGFR inhibitors. Dr. Gray has also developed structure-based, generalized approaches for designing drugs to overcome one of the most common mechanisms of resistance observed against most kinase inhibitor drugs, mutation of the so-called "gatekeeper" residue, which has been observed in resistance to drugs targeting BCR-ABL, c-KIT and PDGFR.
    In 2021, Dr. Gray joined Stanford University where he has joined the Stanford Cancer Institute, Chem-H and the Innovative Medicines Accelerator (IMA) to spur the development of prototype drugs.
    These contributions have been recognized through numerous awards including the National Science Foundation’s Career award in 2007, the Damon Runyon Foundation Innovator award in 2008, the American Association for Cancer Research for Team Science in 2010 and for Outstanding Achievement in 2011 and the American Chemical Society award for Biological Chemistry in 2011, and the Nancy Lurie Marks endowed professorship in 2015 and the Paul Marks Prize in 2019, and the Hope Funds for Cancer Research in 2023.