School of Medicine


Showing 201-300 of 890 Results

  • Jun Ding

    Jun Ding

    Associate Professor of Neurosurgery and of Neurology
    On Leave from 02/01/2024 To 07/31/2024

    Current Research and Scholarly InterestsNeural circuits of movement control in health and movement disorders

  • Elizabeth DiRenzo, PhD

    Elizabeth DiRenzo, PhD

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Music

    Current Research and Scholarly InterestsDr. Erickson DiRenzo's laboratory integrates research techniques from the basic and clinical sciences to improve the prevention and management of voice disorders.

  • Amy D. Dobberfuhl, MD, MS

    Amy D. Dobberfuhl, MD, MS

    Assistant Professor of Urology

    Current Research and Scholarly InterestsDr. Dobberfuhl's current clinical practice includes: Pelvic Reconstruction, Neurourology, and Voiding Dysfunction.

  • Dylan Dodd

    Dylan Dodd

    Assistant Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsHarnessing the gut microbiome to treat human disease.

  • David Drover

    David Drover

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsField of clinical pharmacology. This involves analysis of what the body does to a drug (pharmacokinetics) and how exactly a specific drug affects the body (pharmacodynamics). His research starts at the level of new drug development with detailed analysis of the pharmacokinetics and pharmacodynamics of a medication.

  • Maurice L. Druzin

    Maurice L. Druzin

    Professor of Obstetrics and Gynecology (Maternal Fetal Medicine) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsAntepartum and intrapartum fetal monitoring Prenatal diagnosis Medical complications of pregnancy, particularly: SLE, hypertension, diabetes, malignancy A.

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    BioResearch and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • Dawn Duane

    Dawn Duane

    Clinical Professor, Neurology
    Clinical Professor (By courtesy), Pediatrics

    Current Research and Scholarly InterestsI am a general pediatric neurologist. My interest is in clinical diagnosis and treatment of common neurologic diseases in pediatric patients and teaching feature doctors, neurologists and pediatric neurologists about pediatric neurology.

  • Anne Dubin

    Anne Dubin

    Endowed Professor of Pediatric Cardiology

    Current Research and Scholarly InterestsArrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering
    On Partial Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • James Dunn

    James Dunn

    Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsIntestinal lengthening for short bowel syndrome
    Intestinal stem cell therapy for intestinal failure
    Skin derived precursor cell therapy for enteric neuromuscular dysfunction
    Intestinal tissue engineering

  • Ram S Duriseti

    Ram S Duriseti

    Clinical Associate Professor, Emergency Medicine

    BioRam's Doctoral background and academic interests are in the computational modeling of complex decisions, algorithm design and implementation, and data driven decision making. Outside of clinical work, his main competencies in this regard are software development, algorithm design and implementation, cost-effectiveness analysis, and decision analysis through computational models. He has also collaborated with industry to create and deploy operation specific software involving statistical computing and reasoning under inference. He has been practicing clinical Emergency Medicine in both community and academic settings for over 20 years.

    https://www.shiftgen.com/about
    https://www.linkedin.com/in/ram-duriseti-991614/

  • Gozde Durmus

    Gozde Durmus

    Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.

  • John Eaton

    John Eaton

    Charles Lee Powell Foundation Professor in the School of Engineering, Emeritus

    BioEaton uses experiments and computational simulations to study the flow and heat transfer in complex turbulent flows, especially those relevant to turbomachinery, particle-laden flows, and separated flows, and to develop new techniques for precise control of gas and surface temperature during manufacturing processes.

  • Noelle Hanako Ebel

    Noelle Hanako Ebel

    Clinical Associate Professor, Pediatrics - Gastroenterology

    Current Research and Scholarly InterestsCurrent projects include:
    -indications for combined heart-liver transplantation
    -mitigating perioperative bleeding during cardiac surgery in children with Alagille syndrome
    -congenital heart disease and liver transplantation
    -subspecialty advocacy

  • Elizabeth Egan

    Elizabeth Egan

    Assistant Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsMalaria is a parasitic disease transmitted by mosquitos that is a leading cause of childhood mortality globally. Public health efforts to control malaria have historically been hampered by the rapid development of drug resistance. The goal of our research is to understand the molecular determinants of critical host-pathogen interactions in malaria, with a focus on the erythrocyte host cell. Our long-term goal is to develop novel approaches to prevent or treat malaria and improve child health.

  • Shirit Einav

    Shirit Einav

    Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, coronaviruses, encephalitic alphaviruses, and Ebola, and means to predict progression to severe disease.

  • Yasser El-Sayed, Professor

    Yasser El-Sayed, Professor

    Charles B. and Ann L. Johnson Professor in the School of Medicine and Professor, by courtesy, of Pediatrics (Neonatology) and of Surgery

    Current Research and Scholarly InterestsHigh Risk Obstetrics: preterm labor, preeclampsia, medical and surgical complications of pregnancy, prenatal diagnosis and therapy

  • Cameron Ellis

    Cameron Ellis

    Assistant Professor of Psychology

    BioDr. Cameron Ellis is an Assistant Professor in the Department of Psychology. He leads the Scaffolding of Cognition Team, which focuses on the question: What is it like to be an infant? His team uses methods from neuroscience and cognitive science to assess the basic building blocks of the developing mind and answer this question. They are particularly interested in questions about how infants perceive, attend, learn, and remember. One prominent approach they use is fMRI with awake behaving infants. This provides unprecedented ways to access the cognitive mechanisms underlying the infant mind.

    Dr. Ellis received his Ph.D. from Yale University in 2021. Before that, he received a Masters from Princeton University (2017) and a Bachelor of Science from Auckland University, New Zealand (2013). He was awarded the FLUX Dissertation Prize (2021) and the James Grossman Dissertation Prize (2021), as well as the William Kessen Teaching Award (2019).

  • Edgar Engleman

    Edgar Engleman

    Professor of Pathology and of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsDendritic cells, macrophages, NK cells and T cells; functional proteins and genes; immunotherapeutic approaches to cancer, autoimmune disease, neurodegenerative disease and metabolic disease.

  • Jesse Engreitz

    Jesse Engreitz

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.

    We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease.

  • Daniel Bruce Ennis

    Daniel Bruce Ennis

    Professor of Radiology (Veterans Affairs)

    BioDaniel Ennis {he/him} is a Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a postdoc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to the Department of Radiology at Stanford University as faculty in the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.

  • Gregory Enns

    Gregory Enns

    Professor of Pediatrics (Genetics)

    Current Research and Scholarly Interestsmitochondrial genomics, lysosomal disorders, tandem-mass spectrometry newborn screening, and inborn errors of metabolism presentations and natural history

  • Mo Esfahanian, MD, D. ABA, FAAP

    Mo Esfahanian, MD, D. ABA, FAAP

    Clinical Assistant Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsMy current interests include the suprazygomatic maxillary nerve block and its role in enhanced recovery after cleft palate surgery and the development of a high-fidelity ultrasound phantom model to teach this regional anesthesia technique. I am also investigating the role of erector spinae plane blockade in the post-operative recovery of adolescent idiopathic scoliosis patients undergoing posterior spinal fusion.

  • Neir Eshel, MD, PhD

    Neir Eshel, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)

    BioDr. Eshel (he/him/his) is a tenure-track Assistant Professor in the Department of Psychiatry & Behavioral Sciences at Stanford University School of Medicine.

    His clinical focus is the full-spectrum mental health care of sexual and gender minorities, with particular interest in depression, anxiety, and the complex effects of trauma in this population. He works in collaboration with other primary care and mental health providers at the Stanford LGBTQ+ program.

    His research interests (www.staarlab.com) include the use of optogenetic, electrophysiological, neuroimaging, and behavioral approaches to probe the neural circuits of reward processing, decision making, and social behavior. He has won multi-year grants from the National Institutes of Health, Burroughs-Wellcome Fund, Brain and Behavior Research Foundation, and Simons Foundation to further his research.

    Dr. Eshel has published articles on dopamine and motivation, the neuroscience of irritability, LGBTQ health, reward and punishment processing in depression, behavioral predictors of substance use among adolescents, and the mechanism of transcranial magnetic stimulation. His work has appeared in Nature, Science, Neuron, Nature Neuroscience, Annual Review of Neuroscience, JAMA, JAMA Psychiatry, Neuropsychopharmacology, Proceedings of the National Academy of Sciences, and Journal of Neuroscience. He is a co-inventor on a patent pending for a new class of drugs for addiction, and also the author of the book Learning: The Science Inside, a publication of the American Association for the Advancement of Science.

    He has delivered presentations on the neural circuits of motivated behavior, anger expression in patients with PTSD, how dopamine facilitates learning, and LGBTQ-related topics at departmental seminars in London, Zurich, and Tel Aviv, and at the meetings of the American College of Neuropsychopharmacology, Society of Biological Psychiatry, and Association of American Medical Colleges, among others. He is also an associate editor of the Journal of Gay and Lesbian Mental Health, and an ad-hoc reviewer for numerous publications including Nature, Science, JAMA Psychiatry, Biological Psychiatry, and Current Biology.

    Dr. Eshel has won honors for his scholarship and advocacy, including the Marshall Scholarship, the Outstanding Resident Award from the National Institute of Mental Health, the Science and SciLifeLab Grand Prize for Young Scientists, the Freedman Award (honorable mention) from the Brain and Behavior Research Foundation, the Polymath Award from Stanford's psychiatry department, and the National LGBT Health Achievement Award.

    He is a member of the American Psychiatric Association, American College of Neuropsychopharmacology, Society of Biological Psychiatry, Association of Gay & Lesbian Psychiatrists, Society for Neuroscience, and other professional associations. He is also an advocate for LGBTQ rights, recently serving as the chair of Stanford's LGBTQ+ Benefits Advocacy Committee.

    Prior to Stanford, Dr. Eshel trained and conducted research at the National Institutes of Health, Princeton University, the World Health Organization, University College London, and Harvard University.

  • Carlos O. Esquivel, M.D., Ph.D.,FACS

    Carlos O. Esquivel, M.D., Ph.D.,FACS

    Arnold and Barbara Silverman Professor in Pediatric Transplantation and Professor of Surgery (Abdominal Transplantation) and of Pediatrics (Gastroenterology, Hepatology and Nutrition)

    Current Research and Scholarly Interests1) Induction of immunotolerance
    2) Rejection of liver and intestinal transplantation.
    3) Clinical outcomes of children with unresectable liver tumors.

  • Ryann Fame

    Ryann Fame

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsEarly neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies.

  • Carl Feinstein

    Carl Feinstein

    Professor of Psychiatry and Behavioral Sciences at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsAutism and Asperger's Disorder.

    Genetically-based neurodevelopmental disorder, including Velocardiofacial Syndrome, Smith-Magenis Syndrome, Williams Syndrome, and Fragile X Syndrome.

    Intellectual Disability (mental retardation) and psychiatric disorders.

    Developmental Language Disorder and Learning Disabilities.

    Sensory impairment in children, including visual and hearing impairment.

    Psychiatric aspects of medical illness and disability in children.

  • Jeffrey A. Feinstein, MD, MPH

    Jeffrey A. Feinstein, MD, MPH

    Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.

  • Heidi M. Feldman

    Heidi M. Feldman

    Ballinger-Swindells Endowed Professor of Developmental and Behavioral Pediatrics

    Current Research and Scholarly InterestsMy current research program focuses on infants born preterm, before 32 weeks gestation from two language environments: English and Spanish. The study considers how neurobiological factors, specifically properties of the white matter circuits in the brain, interact with social, psychological, and economic factors to predict language processing efficiency at 18 months of age.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • Stephen Felt, DVM, MPH

    Stephen Felt, DVM, MPH

    Professor of Comparative Medicine

    Current Research and Scholarly InterestsHis research interests include infectious diseases, particularly zoonoses, and exploring techniques which promote the health and welfare of laboratory animals.

  • Anne Fernald

    Anne Fernald

    Josephine Knotts Knowles Professor of Human Biology, Emerita

    Current Research and Scholarly InterestsWorking with English- and Spanish-learning children from diverse socioeconomic and cultural backgrounds, our research examines the importance of early language experience in supporting language development. We are deeply involved in community-based research in San Jose, designing an innovative parent-engagement program for low-resource Latino families with young children. We are also conducting field studies of beliefs about child development and caregiver-child interaction in rural villages in Senegal. A central goal of this translational research is to help parents understand their vital role in facilitating children’s language and cognitive growth.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.

  • Paul Graham Fisher, MD

    Paul Graham Fisher, MD

    Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health

    Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.

  • Robert Fisher, MD, PhD

    Robert Fisher, MD, PhD

    The Maslah Saul, MD, Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.

  • Matthew Fitzgerald, PhD

    Matthew Fitzgerald, PhD

    Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsMy research encompasses several translational projects. One focus is to modify the routine audiologic test battery such that it places equal weight on hearing acuity and hearing function. This work includes measures of speech in noise, or electrophysiologic responses such as the FFR. I also explore tools to better assess and maximize performance in users of hearing aids and cochlear implants. Finally, I am also investigating the benefits of telemedicine, and new treatments for tinnitus.

  • Pamela Flood

    Pamela Flood

    Adjunct Clinical Professor, Anesthesiology, Perioperative and Pain Medicine

    BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.

  • Eric Foote

    Eric Foote

    Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine

    BioEric Foote is a pediatric hospitalist with experience conducting clinical and public health research around the world. His research focuses on identifying and intervening on health disparities in low income countries and in low resource settings. Currently, he is developing and evaluating a community health worker-led household phototherapy intervention to extend access to neonatal jaundice care for newborns in rural Bangladesh. He is also working to improve SARS-CoV-2 testing and genomic surveillance across California and worldwide.

  • Michael Frank

    Michael Frank

    Benjamin Scott Crocker Professor of Human Biology and Professor, by courtesy, of Linguistics

    Current Research and Scholarly InterestsHow do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.

  • Jennifer Frankovich

    Jennifer Frankovich

    Clinical Professor, Pediatrics - Rheumatology

    Current Research and Scholarly InterestsMy primary interest and role at Stanford is to evaluate and treat children with both systemic and organ specific autoimmune disease. In October of 2012, we started a multidisciplinary clinic dedicated to treating patients with PANS (Pediatric Acute-onset Neuropsychiatric Syndromes). I am currently the clinical and research director for the PANS program.

  • Hunter Fraser

    Hunter Fraser

    Professor of Biology

    Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.

    Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing.

  • Michael Fredericson, MD

    Michael Fredericson, MD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsMy research focuses on the etiology, prevention, and treatment of overuse sports injuries in athletes and lifestyle medicine practices for improved health and longevity.

  • Richard Frock

    Richard Frock

    Assistant Professor of Radiation Oncology (Radiation and Cancer Biology)

    Current Research and Scholarly InterestsWe are a functional genomics laboratory interested in elucidating mechanisms of DNA repair pathway choice and genome instability. We employ a powerful discovery platform, High-Throughput Genome-wide Translocation Sequencing (HTGTS), which maps DNA junctions at single nucleotide resolution. Our expertise overlaps many different fields including: genome editing, ionizing radiation and cancer therapeutics, V(D)J and IgH class switch recombination, and meiosis.

  • Adam Frymoyer

    Adam Frymoyer

    Clinical Professor, Pediatrics - Neonatal and Developmental Medicine
    Clinical Associate Professor, Pediatrics

    Current Research and Scholarly InterestsMy research interests focus on understanding the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of medicines used in complex pediatric populations. This includes identifying sources of variation in drug response through the application of population PK-PD modeling and simulation approaches. The goal is to ultimately apply this quantitative understanding to guide therapeutic decision-making in infants and children.

  • Janene Fuerch

    Janene Fuerch

    Clinical Associate Professor, Pediatrics - Neonatal and Developmental Medicine

    BioJanene H. Fuerch, MD is a Clinical Associate Professor of Neonatology at Stanford University Medical Center, as well as an innovator, educator, researcher and physician entrepreneur. She has an undergraduate degree in Neuroscience from Brown University and a medical degree from the Jacobs School of Medicine at SUNY Buffalo. At Stanford University she completed a pediatrics residency, neonatal-perinatal medicine fellowship and the Byers Center for Biodesign Innovation Fellowship.

    She is also Assistant Director of the Biodesign Innovation Fellowship Program at Stanford University, and Co-Director of Impact1 where she mentors and advises new entrepreneurs through all aspects of medical device development, from identifying clinical needs to commercialization. Her specific areas of investigational interest include the development and commercialization process of neonatal, pediatric and maternal health medical devices as well as the utilization of a simulated environment to develop and test medical devices. She is a national leader in neonatal resuscitation, ECMO, device development and has been an AHRQ and FDA funded investigator. But her work extends outside of the academic realm to industry having co-founded EMME (acquired by Simple Health 2022) an award-winning reproductive health company, medical director for Novonate (acquired by Laborie 2023) a neonatal umbilical catheter securement company and notable consultant for Vitara (EXTEND - artificial environment to decrease complications of prematurity), and Avanos™. Janene is passionate about improving the health of children and newborns through medical device innovation and research.

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones Professor in the School of Engineering

    BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
    On Leave from 04/01/2024 To 07/19/2024

    Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

  • Lawrence Fung MD PhD

    Lawrence Fung MD PhD

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsDr. Lawrence Fung an assistant professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. He is the director of the Stanford Neurodiversity Project, director of the Neurodiversity Clinic, and principal investigator at the Fung Lab. His work, which focuses on autism and neurodiversity, traverses from multi-modal neuroimaging studies to new conceptualization of neurodiversity and its application to clinical, education, and employment settings. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and bioanalytical technologies. Using community-based participatory research approach, his team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. His work has been supported by various agencies including the National Institutes of Health, Autism Speaks, California Department of Developmental Services, California Department of Rehabilitation, as well as philanthropy. He received his PhD in chemical engineering from Cornell University, and MD from George Washington University. He completed his general psychiatry residency, child and adolescent psychiatry fellowship, and postdoctoral research fellowship at Stanford.

  • Stephen J. Galli, MD

    Stephen J. Galli, MD

    Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.

  • Hayley Gans

    Hayley Gans

    Clinical Professor, Pediatrics - Infectious Diseases

    Current Research and Scholarly InterestsThe focus of my laboratory is the immune response to viral vaccines evaluating the ontogeny of responses in infants and limitations in immunocompromised hosts. We have studied responses to an early two-dose measles immunization, one versus 2 doses of varicella immunization, and polio vaccine in preterm versus term infants. Other active areas of research include measles and varicella immunity in HIV infected individuals, and transplant recipients.

  • Christopher Gardner

    Christopher Gardner

    Rehnborg Farquhar Professor

    Current Research and Scholarly InterestsThe role of nutrition in individual and societal health, with particular interests in: plant-based diets, differential response to low-carb vs. low-fat weight loss diets by insulin resistance status, chronic disease prevention, randomized controlled trials, human nutrition, community based studies, Community Based Participatory Research, sustainable food movement (animal rights and welfare, global warming, human labor practices), stealth health, nutrition policy, nutrition guidelines

  • Joseph Garner

    Joseph Garner

    Professor of Comparative Medicine and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe medical research community has long recognized that "good well-being is good science". The lab uses an integrated interdisciplinary approach to explore this interface, while providing tangible deliverables for the well-being of human patients and research animals.

  • Matthias Garten

    Matthias Garten

    Assistant Professor of Microbiology and of Bioengineering

    BioMatthias Garten, Ph.D., is an assistant professor in the department of Immunology and Microbiology and the department of Bioengineering. He is a membrane biophysicist who is driven by the question of how the malaria parasite interfaces with its host-red blood cell, how we can use the unique mechanisms of the parasite to treat malaria and to re-engineer cells for biomedical applications.

    He obtained a physics master's degree from the Dresden University of Technology, Germany with a thesis in the laboratory of Dr. Petra Schwille and his Ph.D. life sciences from the University Paris Diderot, France through his work in the lab of Dr. Patricia Bassereau (Insitut Curie) investigating electrical properties of lipid membranes and protein - membrane interactions using biomimetic model systems, giant liposomes and planar lipid membranes.

    In his post-doctoral work at the National Institutes of Health, Bethesda in the laboratory of Dr. Joshua Zimmerberg, he used molecular, biophysical and quantitative approaches to research the malaria parasite. His work led to the discovery of structure-function relationships that govern the host cell – parasite interface, opening research avenues to understand how the parasite connects to and controls its host cell.

  • Sergios Gatidis

    Sergios Gatidis

    Associate Professor of Radiology (Pediatric Radiology)

    BioDr. Gatidis completed his medical training at the University of Tuebingen / Germany and received his Diploma in Mathematics from from the Universities of Tuebingen and Hagen / Germany. His research is focused on multiparametric oncologic medical imaging including hybrid imaging as well as on methods and applications of machine learning for medical image analysis.

  • Brice Gaudilliere

    Brice Gaudilliere

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult-MSD) and, by courtesy, of Pediatrics (Neonatology)

    Current Research and Scholarly InterestsThe advent of high dimensional flow cytometry has revolutionized our ability to study and visualize the human immune system. Our group combines high parameter mass cytometry (a.k.a Cytometry by Time of Flight Mass Spectrometry, CyTOF), with advanced bio-computational methods to study how the human immune system responds and adapts to acute physiological perturbations. The laboratory currently focuses on two clinical scenarios: surgical trauma and pregnancy.

  • Pascal Geldsetzer

    Pascal Geldsetzer

    Assistant Professor of Medicine (Primary Care and Population Health) and, by courtesy, of Epidemiology and Population Health

    BioPascal Geldsetzer is an Assistant Professor of Medicine in the Division of Primary Care and Population Health and, by courtesy, in the Department of Epidemiology and Population Health. He is also affiliated with the Department of Biomedical Data Science, Department of Health Policy, King Center for Global Development, and the Stanford Centers for Population Health Sciences, Innovation in Global Health, and Artificial Intelligence in Medicine & Imaging.

    His research focuses on identifying and evaluating the most effective interventions for improving health at older ages. In addition to leading several randomized trials, his methodological emphasis lies on the use of quasi-experimental approaches to ascertain causal effects in large observational datasets, particularly in electronic health record data. He has won an NIH New Innovator Award (in 2022), a Chan Zuckerberg Biohub investigatorship (in 2022), and two NIH R01 grants as Principal Investigator (both in 2023).

  • Grace Gengoux

    Grace Gengoux

    Clinical Professor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development

    Current Research and Scholarly InterestsDr. Grace Gengoux is Director of the Autism Intervention Clinic and leads an autism intervention research program focused on developing and evaluating promising behavioral and developmental treatments for Autism Spectrum Disorder (ASD).

    Dr. Gengoux is also Associate Chair for Faculty Engagement & Well-being and Department Well-being Director in the Department of Psychiatry and Behavioral Sciences, leading the department's Standing Well-being Advisory Committee.

  • Yael Gernez

    Yael Gernez

    Clinical Associate Professor, Pediatrics - Immunology and Allergy

    BioMy clinic focuses on solving the molecular puzzles that underlie rare allergic and immunologic diseases to shed light on fundamental principles governing allergy, inflammation and immune system defects. My goal is to find better and safer therapies for my patients with rare diseases that include autoinflammation, autoimmunity and primary immune deficiency. It is important to highlight that every patient requires individualized therapeutic approaches based on their underlying genetic problem and the types and severity of their clinical manifestations. For some patients, a hematopoietic stem cell transplant (HSCT) is curative while for others, a targeted drug therapy, such as a biologic or small molecule agent, is most suitable. In some cases, a truly novel therapy may be required, .e.g., anti-sense oligonucleotide therapy to suppress aberrant gene splicing or adoptive cellular therapy. My passion is to provide the best personalized therapy for our patients with allergy and immunology diseases. This often requires performing very specialized functional assays and in some cases in enlisting laboratories with specific expertise or interest in particular genetic disorders.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Emerita

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    Teaching
    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Olivier Gevaert

    Olivier Gevaert

    Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Zahra Ghazi-Askar

    Zahra Ghazi-Askar

    Clinical Assistant Professor, Emergency Medicine

    BioDr. Ghazi-Askar is Assistant Professor of Emergency Medicine and, by courtesy, of Pediatrics and serves as the Director of Pediatric Ultrasound Education in the Department of Emergency Medicine . As an academic clinical educator in with expertise in pediatric and adult point-of-care ultrasound, Dr. Ghazi-Askar's clinical focus is on children and young adults who seek care in the pediatric emergency department. She is specialty-board certified in pediatric emergency medicine.

    At a national level, Dr. Ghazi-Askar is the Chair of Point-of-Care Ultrasound subcommittee for the Association of Pediatric Program Directors (APPD), where she is leading the development of an educational curriculum for pediatric residency point-of-care ultrasound.

    Dr. Ghazi-Askar also has expertise in the field of Tele-ultrasound, where she is able to teach point-of-care ultrasound virtually where clinical expertise may otherwise not be available. Here she is able to provide education and health equity when it is most needed.

  • Amato J. Giaccia

    Amato J. Giaccia

    Jack, Lulu and Sam Willson Professor, Professor of Radiation Oncology, Emeritus

    Current Research and Scholarly InterestsDuring the last five years, we have identified several small molecules that kill VHL deficient renal cancer cells through a synthetic lethal screening approach. Another major interest of my laboratory is in identifying hypoxia-induced genes involved in invasion and metastases. We are also investigating how hypoxia regulates gene expression epigenetically.

  • William Giardino

    William Giardino

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsThe Giardino Laboratory: our group aims to decipher the neural mechanisms underlying psychiatric conditions of stress, addiction, and sleep disturbances. Our work uses combinatorial technologies for precisely mapping, monitoring, and manipulating neural circuits that drive hedonic and homeostatic states. Projects in the lab are funded by the National Institutes of Health (NIAAA), the Whitehall Foundation, and the Brain Research Foundation.

  • Erin Gibson

    Erin Gibson

    Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.

  • Bertil Glader

    Bertil Glader

    Stanford Medicine Professor of Pediatric Hematology/Oncology and Professor, by courtesy, of Pathology

    Current Research and Scholarly InterestsHematology/Oncology, biology, and treatment of bone marrow failure disorders, hereditary coagulation disorders-clinical trials.

  • Jeffrey S.  Glenn, M.D., Ph.D.

    Jeffrey S. Glenn, M.D., Ph.D.

    Joseph D. Grant Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.

  • Anna L Gloyn

    Anna L Gloyn

    Professor of Pediatrics (Endocrinology) and of Genetics

    Current Research and Scholarly InterestsAnna's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.

  • Neville H. Golden M.D.

    Neville H. Golden M.D.

    Marron and Mary Elizabeth Kendrick Professor of Pediatrics, Emeritus

    Current Research and Scholarly InterestsMy research has focused on the medical complications of adolescents with eating disorders. My specific area of study has been the etiology and implications of amenorrhea in adolescents with eating disorders, in particular the management of reduced bone mass and osteoporosis in anorexia nervosa.

  • Shelley Goldman

    Shelley Goldman

    Associate Dean for Faculty Affairs and for Student Affairs and Professor (Teaching) of Education, Emerita

    Current Research and Scholarly InterestsUse and integration of digital technologies for teaching and learning; learning in informal settings, especially learning mathematics and science within families; bringing the tools and mindsets of design thinking to K-12 classrooms and to broadening STEM participation.

  • Andrea Goldstein-Piekarski

    Andrea Goldstein-Piekarski

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    BioDr. Goldstein-Piekarski directs the Computational Psychiatry, Neuroscience, and Sleep Laboratory (CoPsyN Sleep Lab) as an Assistant Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine and PI within the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Palo Alto VA. She received her PhD in 2014 at the University of California, Berkeley where she studied the consequences of sleep on emotional brain function. She then completed a Postdoctoral fellowship at Stanford focusing on understanding the brain basis of anxiety and depression.

    As the director of the CoPsyN Sleep Lab she is developing a translational, interdisciplinary research program that combines human neuroimaging, high-density EEG sleep recording, and computational modeling to understand the neural mechanisms through which sleep disruption contributes to affective disorders, particularly depression, across the lifespan. The ultimate goals of this research are to (1) develop mechanistically-informed interventions that directly target aspects of sleep and brain function to prevent and treat affective disorders and (2) identify novel biomarkers which can identify which individuals are most likely to experience improved mood following targeted sleep interventions.

    This work is currently supported by The KLS Foundation, a R01 from National Institute of Mental Health, and a R61 from the National Institute of Mental Health.

  • Natalia Gomez-Ospina

    Natalia Gomez-Ospina

    Assistant Professor of Pediatrics (Genetics) and of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.

    1) Lysosomal storage diseases:
    Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease


    2) Point of care ammonia testing
    She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.

    3) Gene discovery
    Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.


    For more information go to our website:

    https://www.gomezospina.com/

  • Julie Good, MD

    Julie Good, MD

    Clinical Associate Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsJulie's academic interests include pediatric palliative care, pain and symptom management for children with life-threatening illness, medical acupuncture, and meaning in medicine (the humanistic side of doctoring)

  • William Rowland Goodyer, MD/PhD

    William Rowland Goodyer, MD/PhD

    Assistant Professor of Pediatrics (Cardiology)

    BioDr. Goodyer is a physician scientist who specializes in Pediatric Cardiology and Electrophysiology. Will graduated from McGill University (Montreal, Canada) with a BSc in Biology prior to completing his graduate studies at Stanford University in the Medical Scientist Training Program (MSTP). He subsequently completed residency training in Pediatrics at Boston Children’s Hospital before returning to Stanford to complete a fellowship in Pediatric Cardiology and advanced fellowship in Pediatric Electrophysiology. He additionally performed a postdoctoral fellowship in the Sean Wu laboratory at the Stanford Cardiovascular Institute where he developed the first comprehensive single-cell gene atlas of the entire murine cardiac conduction system (CCS) as well as pioneered the generation of optical imaging agents for the real-time visualization of the CCS to help prevent accidental surgical damage during heart surgeries. Will's lab (www.goodyerlab.com) focuses on basic science advances aimed at the improved diagnosis and treatment of cardiac arrhythmias.

  • Ian Gotlib

    Ian Gotlib

    David Starr Jordan Professor

    Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.

  • Jeffrey Gould

    Jeffrey Gould

    Robert L. Hess Endowed Professor of Pediatrics

    Current Research and Scholarly InterestsPopulation-based studies related to neonatal and perinatal diseases.

  • Or Gozani

    Or Gozani

    Dr. Morris Herzstein Professor

    Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.

  • Edward Graves

    Edward Graves

    Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsApplications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.

  • Florette K. Gray Hazard

    Florette K. Gray Hazard

    Professor - University Medical Line, Pathology

    Current Research and Scholarly InterestsMy scholarly pursuits are primarily focused on the study of death and disease in the pediatric population. It is through this work that I am able to explore fundamental concepts of neoplasia, such as histogenesis and mutagenesis, while utilizing a variety of investigational techniques.

  • Henry T. (Hank) Greely

    Henry T. (Hank) Greely

    Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics

    Current Research and Scholarly InterestsSince 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.

  • Harry B Greenberg

    Harry B Greenberg

    Joseph D. Grant Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsMolecular mechanisms of pathogenesis; determinants of protective immunity; host range and tissue tropism in liver and GI tract pathogenic viruses and studies of vaccines in people.