School of Medicine
Showing 21-28 of 28 Results
-
Sharon R. Long
William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry
On Leave from 10/01/2024 To 12/31/2024Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis
-
Suzanne Pfeffer
Emma Pfeiffer Merner Professor of Medical Sciences
Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.
-
Rajat Rohatgi
Professor of Biochemistry and of Medicine (Oncology)
Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.
-
Florentine Rutaganira
Assistant Professor of Biochemistry and of Developmental Biology
Current Research and Scholarly InterestsWe use chemical tools to decipher the roles of key signaling networks in choanoflagellates, single-celled organisms that are the closest living relatives of animals. Choanoflagellates produce molecular signals essential for intercellular communication in animals and the presence of these molecules in choanoflagellates suggests that signaling components needed to communicate between cells is evolutionarily ancient. We aim to uncover new understanding of animal development, physiology and disease.
-
Julia Salzman
Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes
-
James Spudich
Douglass M. and Nola Leishman Professor of Cardiovascular Disease, Emeritus
Current Research and Scholarly InterestsThe general research interest of this laboratory is the molecular basis of cell motility, with a current emphasis on power output by the human heart. We have three specific research interests, the molecular basis of energy transduction that leads to ATP-driven myosin movement on actin, the biochemical basis of the regulation of actin and myosin interaction and their assembly states, and the roles these proteins play in vivo, in cell movement, changes in cell shape and muscle contraction.
-
Aaron F. Straight
Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.
-
Haopeng Xiao
Assistant Professor of Biochemistry
BioUnderstanding mechanisms of metabolic regulation in physiology and disease forms the basis for developing therapies to treat diseases in which metabolism is perturbed. Dr. Xiao devises novel mass spectrometry (MS)-based proteomics technologies, combined with data science, to systematically discover mechanisms of metabolic regulation over protein function. His strategies established the first tissue-specific landscape of protein cysteine redox regulation during aging, elucidating mechanisms of redox signaling in physiology that remained elusive for decades. Dr. Xiao also leverages the genetic diversity of outbred populations to systematically annotate protein function and protein-metabolite co-regulation. The aim of his research program is to develop next-generation MS-based strategies to understand mechanisms of metabolic regulation in aging, metabolic disease, and cancer, and to use this knowledge as a basis to develop translational therapeutics.