Precourt Institute for Energy


Showing 41-60 of 89 Results

  • Thomas Jaramillo

    Thomas Jaramillo

    Professor of Chemical Engineering, of Energy Science Engineering, and of Photon Science

    BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.

  • Ramesh Johari

    Ramesh Johari

    Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering

    BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).

  • Leigh Johnson

    Leigh Johnson

    Academic Research & Program Officer, Precourt Institute for Energy

    BioLeigh works closely with the faculty co-directors and staff to implement the institute’s vision and strategic direction. She manages a team who supports the energy research, education and outreach mission of the institute and Stanford broadly. The institute serves as the hub for over 200 faculty across the university who conduct energy research, students from Stanford’s seven schools, and staff from energy programs and centers across Stanford. Outreach activities engage stakeholders from industry, government and non-governmental organizations, academia and the Stanford alumni community in an energy ecosystem. Activities that serve this broad constituency include several annual conferences, topical workshops, student programs and the weekly Stanford Energy Seminar. The team covers energy news and information across the university through articles in Stanford Report, the institute's website, the monthly Stanford Energy News and social media.

    Leigh started at Stanford in 2003 as project development director for the Provost Committee for the Environment, and as the first employee she served as associate director of programs at the Stanford Woods Institute for the Environment where she worked for seven years on a wide-range of entrepreneurial and programmatic activities. Prior to joining Stanford, Leigh worked in public relations at Regis McKenna Inc. and sales at IBM. Non-profit commitments have included: president of the Las Lomitas Education Foundation, president of the Ragazzi Boys Chorus Board of Directors, and docent for Y2E2 building tours. Leigh holds an A.B. degree in mathematics from Dartmouth College.

  • Omer Karaduman

    Omer Karaduman

    Assistant Professor of Operations, Information and Technology at the Graduate School of Business and Center Fellow at the Stanford Institute for Economic Policy Research and at the Precourt Institute for Energy

    BioPrior to coming to Stanford, Omer completed his Ph.D. in Economics at MIT in 2020, and got his bachelor's degree in Economics from Bilkent University in 2014.

    His research focuses on the transition of the energy sector towards a decarbonized and sustainable future. In his research, he utilizes large datasets by using game-theoretical modeling to have practical policy suggestions.

  • Leonid Kazovsky

    Leonid Kazovsky

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Kazovsky and his research group are investigating green energy-efficient networks. The focus of their research is on access and in-building networks and on hybrid optical / wireless networks. Prof. Kazovsky's research group is also conducting research on next-generation Internet architectures and novel zero-energy photonic components.

  • Jeffrey R. Koseff

    Jeffrey R. Koseff

    Director, Sustainability Science and Practice, William Alden Campbell and Martha Campbell Professor in the School of Engineering, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment

    BioJeff Koseff, founding co-director of the Stanford Woods Institute for the Environment, is an expert in the interdisciplinary domain of environmental fluid mechanics. His research falls in the interdisciplinary domain of environmental fluid mechanics and focuses on the interaction between physical and biological systems in natural aquatic environments. Current research activities are in the general area of environmental fluid mechanics and focus on: turbulence and internal wave dynamics in stratified flows, coral reef and sea-grass hydrodynamics, the role of natural systems in coastal protection, and flow through terrestrial and marine canopies. Most recently he has begun to focus on the interaction between gravity currents and breaking internal waves in the near-coastal environment, and the transport of marine microplastics. Koseff was formerly the Chair of Civil and Environmental Engineering, and the Senior Associate Dean of Engineering at Stanford, and has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, and Cornell University. He has also been a member of review committees for the College of Engineering at the University of Michigan, The WHOI-MIT Joint Program, and the University of Minnesota Institute on the Environment. He is a former member of the Independent Science Board of the Bay/Delta Authority. He was elected a Fellow of the American Physical Society in 2015, and received the Richard Lyman Award from Stanford University in the same year. In 2020 he was elected as a Fellow of the California Academy of Sciences. Koseff also serves as the Faculty Athletics Representative to the Pac-12 and NCAA for Stanford.

  • Anthony Kovscek

    Anthony Kovscek

    Keleen and Carlton Beal Professor of Petroleum Engineering

    Current Research and Scholarly InterestsResearch
    Together with my research group, I develop and apply advanced imaging techniques, experimentation, and models to understand complex multiphase flows of gas, water, and organic phases in natural and manufactured porous media with applications in carbon storage, increased utilization of carbon dioxide for subsurface applications, hydrogen storage, and water reuse. In all of our work, physical observations, obtained mainly from laboratory and field measurements, are interwoven with theory.

    Teaching
    My teaching interests center broadly around education of students to meet the energy challenges that we will face this century. I teach undergraduate courses that examine the interplay of energy use and environmental issues including renewable energy resources and sustainability. At the graduate level, I offer classes on renewable energy processes based on heat and the thermodynamics of hydrocarbon mixtures.

    Professional Activities
    Member, American Geophysical Union, Society of Petroleum Engineers, and the American Chemical Society.

  • Sanjay Lall

    Sanjay Lall

    Professor of Electrical Engineering
    On Leave from 04/01/2024 To 06/30/2024

    BioSanjay Lall is Professor of Electrical Engineering in the Information Systems Laboratory and Professor of Aeronautics and Astronautics at Stanford University. He received a B.A. degree in Mathematics with first-class honors in 1990 and a Ph.D. degree in Engineering in 1995, both from the University of Cambridge, England. His research group focuses on algorithms for control, optimization, and machine learning. Before joining Stanford he was a Research Fellow at the California Institute of Technology in the Department of Control and Dynamical Systems, and prior to that he was a NATO Research Fellow at Massachusetts Institute of Technology, in the Laboratory for Information and Decision Systems. He was also a visiting scholar at Lund Institute of Technology in the Department of Automatic Control. He has significant industrial experience applying advanced algorithms to problems including satellite systems, advanced audio systems, Formula 1 racing, the America's cup, cloud services monitoring, and integrated circuit diagnostic systems, in addition to several startup companies. Professor Lall has served as Associate Editor for the journal Automatica, on the steering and program committees of several international conferences, and as a reviewer for the National Science Foundation, DARPA, and the Air Force Office of Scientific Research. He is the author of over 130 peer-refereed publications.

  • Philip Levis

    Philip Levis

    Professor of Computer Science and of Electrical Engineering

    BioProfessor Levis' research focuses on the design and implementation of efficient software systems for embedded wireless sensor networks; embedded network sensor architecture and design; systems programming and software engineering.

  • Raymond Levitt

    Raymond Levitt

    Kumagai Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsDr. Levitt founded and directs Stanford’s Global Projects Center (GPC), which conducts research, education and outreach to enhance financing, governance and sustainability of global building and infrastructure projects. Dr. Levitt's research focuses on developing enhanced governance of infrastructure projects procured via Public-Private Partnerships (PPP) delivery, and alternative project delivery approaches for complex buildings like full-service hospitals or data centers.

  • Aaron Lindenberg

    Aaron Lindenberg

    Professor of Materials Science and Engineering and of Photon Science

    BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.

  • David Lobell

    David Lobell

    Benjamin M. Page Professor, William Wrigley Senior Fellow at the Freeman Spogli Institute, at the Woods Institute for the Environment and at the Stanford Institute for Economic Policy Research

    Current Research and Scholarly InterestsWe study the interactions between food production, food security, and the environment using a range of modern tools.

  • Dr. Arun Majumdar

    Dr. Arun Majumdar

    Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mech Eng, of Energy Sci & Eng, of Photon Science, Senior Fellow at Woods and by courtesy, of Materials Sci & Eng and Senior Fellow, by courtesy, at Hoover

    BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.

    In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.

    Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.

    After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.

    Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.

    Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.

    Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989.

  • Ali Mani

    Ali Mani

    Associate Professor of Mechanical Engineering

    BioAli Mani is an associate professor of Mechanical Engineering at Stanford University. He is a faculty affiliate of the Institute for Computational and Mathematical Engineering at Stanford. He received his PhD in Mechanical Engineering from Stanford in 2009. Prior to joining the faculty in 2011, he was an engineering research associate at Stanford and a senior postdoctoral associate at Massachusetts Institute of Technology in the Department of Chemical Engineering. His research group builds and utilizes large-scale high-fidelity numerical simulations, as well as methods of applied mathematics, to develop quantitative understanding of transport processes that involve strong coupling with fluid flow and commonly involve turbulence or chaos. His teaching includes the undergraduate engineering math classes and graduate courses on fluid mechanics and numerical analysis.

  • Gilbert Masters

    Gilbert Masters

    Professor (Teaching) of Civil and Environmental Engineering, Emeritus

    BioGILBERT M. MASTERS
    MAP EMERITUS PROFESSOR OF SUSTAINABLE ENERGY
    B.S. (1961) AND M.S. (1962) UNIVERSITY OF CALIFORNIA, LOS ANGELES
    PH.D. (1966) Electrical Engineering, STANFORD UNIVERSITY

    Gil Masters has focused on energy efficiency and renewable energy systems as essential keys to slowing global warming, enhancing energy security, and improving conditions in underserved, rural communities. Although officially retired in 2002, he has continued to teach CEE 176A: Energy-Efficient Buildings, and CEE 176B: Electric Power: Renewables and Efficiency. He is the author or co-author of ten books, including Introduction to Environmental Engineering and Science (3rd edition, 2008), Renewable and Efficient Electric Power Systems, (2nd edition, 2013), and Energy for Sustainability: Technology, Policy and Planning (2nd edition, 2018). Professor Masters has been the recipient of a number of teaching awards at Stanford, including the university's Gores Award for Excellence in Teaching, and the Tau Beta Pi teaching award from the School of Engineering. Over the years, more than 10,000 students have enrolled in his courses. He served as the School of Engineering Associate Dean for Student Affairs from 1982-1986, and he was the Interim Chair of the Department of Civil and Environmental Engineering in 1992-93.

  • Pamela Matson

    Pamela Matson

    Richard and Rhoda Goldman Professor of Environmental Studies and Senior Fellow at the Woods Institute, Emerita

    BioPAMELA MATSON is an interdisciplinary sustainability scientist, academic leader, and organizational strategist. She served as dean of Stanford University’s School of Earth, Energy and Environmental Sciences from 2002-2017, building interdisciplinary departments and educational programs focused on resources, environment and sustainability, as well as co-leading university-wide interdisciplinary initiatives. In her current role as the Goldman Professor of Environmental Studies and Senior Fellow in the Woods Institute for the Environment, she leads the graduate program on Sustainability Science and Practice. Her research addresses a range of environment and sustainability issues, including sustainability of agricultural systems, vulnerability and resilience of particular people and places to climate change, and characteristics of science that can contribute to sustainability transitions at scale.

    Dr. Matson serves as chair of the board of the World Wildlife Fund-US and as a board member of the World Wildlife Fund-International and several university advisory boards. She served on the US National Academy of Science Board on Sustainable Development and co-wrote the National Research Council’s volume Our Common Journey: A transition toward sustainability (1999); she also led the NRC committee on America’s Climate Choices: Advancing the Science of Climate Change. She was the founding chair of the National Academies Roundtable on Science and Technology for Sustainability, and founding editor for the Annual Review of Environment and Resources. She is a past President of the Ecological Society of America. Her recent publications (among around 200) include Seeds of Sustainability: Lessons from the Birthplace of the Green Revolution (2012) and Pursuing Sustainability (2016).

    Pam is an elected member of the National Academy of Science and the American Academy of Arts and Sciences, and is a AAAS Fellow. She received a MacArthur Foundation Award, contributed to the award of the Nobel Prize to the Intergovernmental Panel on Climate Change, among other awards and recognitions, and is an Einstein Fellow of the Chinese Academy of Sciences.

    Dr. Matson holds a Bachelor of Science degree with double majors in Biology and Literature from the University of Wisconsin (Eau Claire), a Master degree in Environmental Science and Policy from Indiana University’s School of Public and Environmental Affairs, a Doctorate in Forest Ecology from Oregon State University, and honorary doctorates from Princeton, McGill and Arizona State Universities. She spent ten years as a research scientist with NASA-Ames Research Center before moving to a professorship at the University of California Berkeley and, in 1997, to Stanford University.

  • Meagan Mauter

    Meagan Mauter

    Associate Professor of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering

    BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.

    Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.

    Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Reginald Mitchell

    Reginald Mitchell

    Professor of Mechanical Engineering, Emeritus

    BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.

    Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.

    Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department.