Stanford Doerr School of Sustainability
Showing 1-10 of 40 Results
-
Ines M. L. Azevedo
Professor of Energy Science Engineering and, by courtesy, of Civil and Environmental Engineering
Current Research and Scholarly InterestsProfessor Azevedo is passionate about solving problems that include environmental, technical, economic, and policy issues, where traditional engineering approaches play an important role but cannot provide a complete answer. In particular, she is interested in assessing how energy systems are likely to evolve, which requires comprehensive knowledge of the technologies that can address future energy needs and the decision-making process followed by various agents in the economy.
-
Khalid Aziz
Otto N. Miller Professor in the School of Earth Sciences, Emeritus
Current Research and Scholarly InterestsOptimization and reservoir Simulation.
-
Ilenia Battiato
Associate Professor of Energy Science Engineering
Current Research and Scholarly InterestsEnergy and environment (battery systems; superhydrophobicity and drag reduction; carbon sequestration); multiscale, mesoscale and hybrid simulations (multiphase and reactive transport processes); effective medium theories; perturbation methods, homogenization and upscaling.
-
Sally Benson
Precourt Family Professor, Professor of Energy Science Engineering and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsMy research is focused on reducing the risks of climate change by developing energy supplies with low carbon emissions. Students and post-doctoral fellows in my research group work on carbon dioxide storage, energy systems analysis, and pathways for transitioning to a low-carbon energy system.
-
Stacey Bent
Vice Provost, Graduate Education & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science and Engineering and, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry
BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.
-
Karan Bhuwalka
Research Engineer
BioDr. Karan Bhuwalka leads the materials supply chain modeling at STEER, a research group that conducts rigorous techno-economic analysis to guide investment, innovation, and policy for the energy transition. Karan's research integrates economics, statistics, manufacturing and materials science to identify pathways to sustainably scale-up critical minerals production. Scaling-up energy supply chains rapidly while minimising life-cycle impacts requires aligning technology, markets and policies. STEER takes a systems approach that links engineering process models with supply and demand considerations to inform decision-making under uncertainty. Karan's current work is focused on modeling graphite production. Previous work spans lithium, nickel, recycled plastics systems and Bayesian modeling to reduce uncertainity in material demand.
-
Adam Brandt
Professor of Energy Science Engineering
Current Research and Scholarly InterestsGreenhouse gas emissions, energy systems optimization, mathematical modeling of resource depletion, life cycle analysis
-
Steven Chu
William R. Kenan Jr. Professor, Professor of Molecular and Cellular Physiology and of Energy Science and Engineering
Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water
-
William Chueh
Director, Precourt Institute for Energy, Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy
BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.
-
Yi Cui
Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry
BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.