Stanford Doerr School of Sustainability
Showing 1-15 of 15 Results
-
Stephen Palumbi
Jane and Marshall Steel Jr. Professor of Marine Sciences, Professor of Oceans and of Biology
Current Research and Scholarly InterestsWe're interested in ecological, evolutionary, and conservation questions related to marine (and sometimes terrestrial) organisms and ecosystems. We use evolutionary genetics and molecular ecology techniques, and our fieldwork takes us all around the world. Currently, we're studying coral diversity, the adaptive potential of corals in response to climate change, the movement of organisms between marine reserves, genetic changes in abalone in response to environmental.
-
Ayla Pamukcu
Assistant Professor of Earth and Planetary Sciences and, by courtesy, of Geophysics
Current Research and Scholarly InterestsI have long been fascinated by magmas and volcanic eruptions, for reasons ranging from purely academic (trying to understand the magmatic construction of Earth’s crust) to purely practical (developing effective monitoring and mitigation strategies for volcanic eruptions). Consequently, my research revolves around understanding how, when, where, and why magmas are stored, evolve, and ultimately do (or do not!) erupt.
Within this context, I focus on two main themes: (1) the temporal, chemical, and physical, evolution of magmas, and (2) the interplay between magma storage conditions in the crust and magmatic processes. I employ a multi-faceted approach to explore these topics, integrating data from multiple scales and perspectives; my studies capitalize on information contained in field relations, crystal and melt inclusion textures (sizes, shapes, positions), crystal and volcanic glass geochemistry, geochronology, phase-equilibria and numerical modeling, and experiments. As a function of this approach, I am also engaged in the development of novel methods to address petrologic problems in new, better, and more refined ways than is currently possible.
A major focus of my research has been on supereruptions – gigantic explosive eruptions the likes of which we have never seen in recorded human history – but I am continually exploring other kinds of magmatic systems. I am currently particularly interested in the links (or lack thereof) between extrusive (i.e., erupted) and intrusive (i.e., unerupted) magmas, similarities/differences between large- and small-volume eruptions, and similarities/differences between magmas generated at different levels of the crust. I have also had a longstanding interest in the interactions and relationships between humans and their geologic surroundings (particularly volcanoes). -
Marco Pavone
Associate Professor of Aeronautics and Astronautics, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Electrical Engineering & of Computer Science
BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.
-
Jonathan Payne
Dorrell William Kirby Professor, Senior Associate Dean for Faculty Affairs, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsMy goal in research is to understand the interaction between environmental change and biological evolution using fossils and the sedimentary rock record. How does environmental change influence evolutionary and ecological processes? And conversely, how do evolutionary and ecological changes affect the physical environment? I work primarily on the marine fossil record over the past 550 million years.
-
Kabir Peay
Director of the Earth Systems Program, Professor of Biology, of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsOur lab studies the ecological processes that structure natural communities and the links between community structure and the cycling of nutrients and energy through ecosystems. We focus primarily on fungi, as these organisms are incredibly diverse and are the primary agents of carbon and nutrient cycling in terrestrial ecosystems. By working across multiple scales we hope to build a 'roots-to-biomes' understanding of plant-microbe symbiosis.
-
Dmitri Petrov
Michelle and Kevin Douglas Professor in the School of Humanities and Sciences
Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation
-
Jim Plummer
John M. Fluke Professor of Electrical Engineering. Emeritus
Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.
-
David Pollard
The Barney and Estelle Morris Professor of Earth Sciences, Emeritus
Current Research and Scholarly InterestsMy research aims to understand how faults and fractures initiate and evolve in Earth's brittle crust, how they affect the flow of molten rock, groundwater, and hydrocarbons, and the crucial role faults and fractures play in earthquake generation, folding of sedimentary strata, and volcanic eruption.
-
Eric Pop
Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics
Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.
-
Balaji Prabhakar
VMware Founders Professor of Computer Science, Professor of Electrical Engineering and, by courtesy, of Operations, Information and Technology at the Graduate School of Business
BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.
-
Manu Prakash
Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology
BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.
-
Argenta Price
Lecturer
BioArgenta Price is a lecturer and teaching and learning specialist in the Stanford Doerr School of Sustainability. Prior to joining SDSS, she received her PhD in biochemistry and molecular biology from UCSF, then pivoted to be a science education researcher in Carl Wieman’s research group at Stanford for 7 years. She led workshops for faculty members and co-taught a Stanford course about the principles of learning and effective teaching practices. Her research focused on defining the process of solving complex problems and developing better ways to measure and teach the decisions that comprise that process. As a lecturer in SDSS, she is working with Drs. Majumdar and Moler to design their new course, “Decision Making for Sustainable Energy,” in which students will learn to make problem-solving decisions in the context of solving sustainable energy problems at personal, local, and national scales. She will also collaborate with any instructors who are interested in incorporating active learning and inclusive teaching practices, trying innovative assessment methods, measuring the effectiveness of their courses, or developing materials for new courses or topics.
-
Friedrich Prinz
Leonardo Professor, Professor of Mechanical Engineering, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy
BioFritz Prinz is the Leonardo Professor in the School of Engineering at Stanford University, Professor of Materials Science and Engineering, Professor of Mechanical Engineering, and Senior Fellow at the Precourt Institute for Energy. He also serves as the Director of the Nanoscale Prototyping Laboratory and Faculty Co-director of the NPL-Affiliate Program. A solid-state physicist by training, Prinz leads a group of doctoral students, postdoctoral scholars, and visiting scholars who are addressing fundamental issues on energy conversion and storage at the nanoscale. In his Laboratory, a wide range of nano-fabrication technologies are employed to build prototype fuel cells and capacitors with induced topological electronic states. We are testing these concepts and novel material structures through atomic layer deposition, scanning tunneling microscopy, impedance spectroscopy and other technologies. In addition, the Prinz group group uses atomic scale modeling to gain insights into the nature of charge separation and recombination processes. Before coming to Stanford in 1994, he was on the faculty at Carnegie Mellon University. Prinz earned a PhD in Physics at the University of Vienna.