Stanford Doerr School of Sustainability


Showing 1-10 of 16 Results

  • Alberto Salleo

    Alberto Salleo

    Hong Seh and Vivian W. M. Lim Professor

    Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.

  • Nancy Sandoval

    Nancy Sandoval

    Executive Assistant, Precourt Institute for Energy

    BioNancy is the executive assistant to Yi Cui, Director of the Precourt Institute for Energy. She supports him in all facets of his day-to-day working and administrative roles.

    Nancy started at Stanford University in 2003 with the inception of GCEP and is known as “GCEP Employee #1.” Before joining Stanford, she worked for many years as an administrative assistant at the U.S. Geological Survey in Menlo Park. She has a daughter and a son who are both graduates of Stanford University.

  • Krishna Saraswat

    Krishna Saraswat

    Rickey/Nielsen Professor in the School of Engineering and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsNew and innovative materials, structures, and process technology of semiconductor devices, interconnects for nanoelectronics and solar cells.

  • John Louis Sarrao

    John Louis Sarrao

    Director of the SLAC National Accelerator Laboratory, Professor of Photon Science, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering

    BioJohn Sarrao became SLAC National Accelerator Laboratory’s sixth director in October 2023. The lab’s ~2,000 staff advance the frontiers of science by exploring how the universe works at the biggest, smallest, and fastest scales and invent powerful tools used by scientists around the globe. SLAC’s research helps solve real-world problems and advances the interests of the nation. SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. It is home to three Office of Science national user facilities: the Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser; the Stanford Synchrotron Radiation Lightsource (SSRL); and the Facility for Advanced Accelerator Experimental Tests, (FACET-II). SLAC hosts thousands of users each year and manages an annual budget of ~$700M. In addition to his role as lab director, John is a professor of photon science, and by courtesy, of materials science and engineering at Stanford University, a senior fellow at Stanford’s Precourt Institute, and dean of SLAC faculty.

    John came to SLAC from Los Alamos National Laboratory (LANL) in New Mexico, where he served as the deputy director for science, technology, and engineering. In that role, he led multiple directorates, including chemistry, earth and life sciences, global security, physical sciences, and simulation and computation. He also stewarded technology transitions and served as LANL’s chief research officer in support of its national security mission. Before becoming deputy director, he served as associate director for theory, simulation, and computation and division leader for materials physics and applications at LANL.

    John’s scientific research focus is superconductivity in materials. He studies the synthesis and characterization of correlated electron systems, especially actinide materials. He won the 2013 Department of Energy’s E.O. Lawrence Award and is a fellow of the American Association for the Advancement of Science, the American Physical Society, and LANL. John received his PhD and master’s degree in physics from the University of California, Los Angeles, and a bachelor’s degree in physics from Stanford University.

  • Richard Sassoon

    Richard Sassoon

    Executive Director Strategic Energy Alliance, Precourt Institute for Energy

    BioRichard E. Sassoon is the Executive Director of the Strategic Energy Alliance under the Precourt Institute for Energy at Stanford. Prior to this role, he was the Managing Director of the Global Climate and Energy Project (GECP) at Stanford since November 2003. Dr. Sassoon has over 30 years of research and management experience in the fields of physical and analytical chemistry, as well as energy sciences.

    Prior to joining Stanford, Dr. Sassoon was Senior Scientist and Assistant Vice President at Science Applications International Corporation (SAIC), where he led systems integration efforts for nanotechnology applications. For many years, he was a contractor to the Department of Energy supporting the strategic planning and management of its environmental programs, and its hydrogen and renewable energy activities.

    Dr. Sassoon spent over a decade conducting research into photochemical solar energy conversion and storage systems, performing computer modeling of the catalytic processes involved in hydrogen production, and investigating technologies for cleanup of nuclear waste.

    Dr. Sassoon received his B.Sc. in Chemistry from Leeds University in the UK, and his Ph.D. in Physical Chemistry from the Hebrew University of Jerusalem in Israel. He conducted his post-doctoral activities at the University of Notre Dame. Dr. Sassoon has authored over 20 research papers in peer-reviewed journals, has received several awards including the Gabriel Stein award for outstanding research during his Ph.D. studies.

  • Alicia Seiger

    Alicia Seiger

    Managing Director, Sustainable Finance Initiative, Precourt Institute for Energy

    Current Role at StanfordLecturer, Stanford Law School; Managing Director Steyer-Taylor Center for Energy Policy and Finance; Managing Director, Precourt Institute Sustainable Finance Initiative at Stanford Doerr School of Sustainability.

  • Debbie Senesky

    Debbie Senesky

    Associate Professor of Aeronautics and Astronautics, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy

    BioDebbie G. Senesky is an Associate Professor at Stanford University in the Aeronautics and Astronautics Department and the Electrical Engineering Department. In addition, she is the Principal Investigator of the EXtreme Environment Microsystems Laboratory (XLab). Her research interests include the development of nanomaterials for extreme harsh environments, high-temperature electronics for Venus exploration, and microgravity synthesis of nanomaterials. In the past, she has held positions at GE Sensing (formerly known as NovaSensor), GE Global Research Center, and Hewlett Packard. She received the B.S. degree (2001) in mechanical engineering from the University of Southern California. She received the M.S. degree (2004) and Ph.D. degree (2007) in mechanical engineering from the University of California, Berkeley. Prof. Senesky is the Site Director of nano@stanford. She is currently the co-editor of two technical journals: IEEE Journal of Microelectromechanical Systems and Sensors. In recognition of her research, she received the Emerging Leader Abie Award from AnitaB.org in 2018, Early Faculty Career Award from the National Aeronautics and Space Administration (NASA) in 2012, Gabilan Faculty Fellowship Award in 2012, and Sloan Ph.D. Fellowship from the Alfred P. Sloan Foundation in 2004.

    Prof. Senesky's career path and research has been featured by Scientific American, Seeker, People Behind the Science podcast, The Future of Everything radio show, Space.com, and NPR's Tell Me More program. More information about Prof. Senesky can be found at https://xlab.stanford.edu and on Instagram (@astrodebs).

  • Olav Solgaard

    Olav Solgaard

    Director, Edward L. Ginzton Laboratory and Robert L. and Audrey S. Hancock Professor in the School of Engineering

    BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.