Stanford Doerr School of Sustainability
Showing 51-88 of 88 Results
-
David Lobell
Benjamin M. Page Professor, William Wrigley Senior Fellow at the Freeman Spogli Institute, at the Woods Institute for the Environment and at the Stanford Institute for Economic Policy Research
Current Research and Scholarly InterestsWe study the interactions between food production, food security, and the environment using a range of modern tools.
-
Katharine (Kate) Maher
Professor of Earth System Science, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Earth and Planetary Sciences
Current Research and Scholarly InterestsHydrology, reactive transport modeling and environmental geochemistry
-
Dr. Arun Majumdar
Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Eng, of Energy Science & Eng, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Materials Science & Eng
BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.
In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.
Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.
After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.
Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.
Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.
Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989. -
Ali Mani
Associate Professor of Mechanical Engineering
BioAli Mani is an associate professor of Mechanical Engineering at Stanford University. He is a faculty affiliate of the Institute for Computational and Mathematical Engineering at Stanford. He received his PhD in Mechanical Engineering from Stanford in 2009. Prior to joining the faculty in 2011, he was an engineering research associate at Stanford and a senior postdoctoral associate at Massachusetts Institute of Technology in the Department of Chemical Engineering. His research group builds and utilizes large-scale high-fidelity numerical simulations, as well as methods of applied mathematics, to develop quantitative understanding of transport processes that involve strong coupling with fluid flow and commonly involve turbulence or chaos. His teaching includes the undergraduate engineering math classes and graduate courses on fluid mechanics and numerical analysis.
-
Gilbert Masters
Professor (Teaching) of Civil and Environmental Engineering, Emeritus
BioGILBERT M. MASTERS
MAP EMERITUS PROFESSOR OF SUSTAINABLE ENERGY
B.S. (1961) AND M.S. (1962) UNIVERSITY OF CALIFORNIA, LOS ANGELES
PH.D. (1966) Electrical Engineering, STANFORD UNIVERSITY
Gil Masters has focused on energy efficiency and renewable energy systems as essential keys to slowing global warming, enhancing energy security, and improving conditions in underserved, rural communities. Although officially retired in 2002, he has continued to teach CEE 176A: Energy-Efficient Buildings, and CEE 176B: Electric Power: Renewables and Efficiency. He is the author or co-author of ten books, including Introduction to Environmental Engineering and Science (3rd edition, 2008), Renewable and Efficient Electric Power Systems, (2nd edition, 2013), and Energy for Sustainability: Technology, Policy and Planning (2nd edition, 2018). Professor Masters has been the recipient of a number of teaching awards at Stanford, including the university's Gores Award for Excellence in Teaching, and the Tau Beta Pi teaching award from the School of Engineering. Over the years, more than 10,000 students have enrolled in his courses. He served as the School of Engineering Associate Dean for Student Affairs from 1982-1986, and he was the Interim Chair of the Department of Civil and Environmental Engineering in 1992-93. -
Pamela Matson
Richard and Rhoda Goldman Professor of Environmental Studies and Senior Fellow at the Woods Institute, Emerita
BioPAMELA MATSON is an interdisciplinary sustainability scientist, academic leader, and organizational strategist. She served as dean of Stanford University’s School of Earth, Energy and Environmental Sciences from 2002-2017, building interdisciplinary departments and educational programs focused on resources, environment and sustainability, as well as co-leading university-wide interdisciplinary initiatives. In her current role as the Goldman Professor of Environmental Studies and Senior Fellow in the Woods Institute for the Environment, she leads the graduate program on Sustainability Science and Practice. Her research addresses a range of environment and sustainability issues, including sustainability of agricultural systems, vulnerability and resilience of particular people and places to climate change, and characteristics of science that can contribute to sustainability transitions at scale.
Dr. Matson serves as chair of the board of the World Wildlife Fund-US and as a board member of the World Wildlife Fund-International and several university advisory boards. She served on the US National Academy of Science Board on Sustainable Development and co-wrote the National Research Council’s volume Our Common Journey: A transition toward sustainability (1999); she also led the NRC committee on America’s Climate Choices: Advancing the Science of Climate Change. She was the founding chair of the National Academies Roundtable on Science and Technology for Sustainability, and founding editor for the Annual Review of Environment and Resources. She is a past President of the Ecological Society of America. Her recent publications (among around 200) include Seeds of Sustainability: Lessons from the Birthplace of the Green Revolution (2012) and Pursuing Sustainability (2016).
Pam is an elected member of the National Academy of Science and the American Academy of Arts and Sciences, and is a AAAS Fellow. She received a MacArthur Foundation Award, contributed to the award of the Nobel Prize to the Intergovernmental Panel on Climate Change, among other awards and recognitions, and is an Einstein Fellow of the Chinese Academy of Sciences.
Dr. Matson holds a Bachelor of Science degree with double majors in Biology and Literature from the University of Wisconsin (Eau Claire), a Master degree in Environmental Science and Policy from Indiana University’s School of Public and Environmental Affairs, a Doctorate in Forest Ecology from Oregon State University, and honorary doctorates from Princeton, McGill and Arizona State Universities. She spent ten years as a research scientist with NASA-Ames Research Center before moving to a professorship at the University of California Berkeley and, in 1997, to Stanford University. -
Meagan Mauter
Associate Professor of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering
BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.
Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.
Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University. -
Nicholas Melosh
Professor of Materials Science and Engineering
BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth -
Reginald Mitchell
Professor of Mechanical Engineering, Emeritus
BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.
Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.
Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department. -
Simona Onori
Associate Professor of Energy Science Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsModeling, control and optimization of dynamic systems;
Model-based control in advanced propulsion systems;
Energy management control and optimization in HEVs and PHEVs;
Energy storage systems- Li-ion and PbA batteries, Supercapacitors;
Battery aging modeling, state of health estimation and life prediction for control;
Damage degradation modeling in interconnected systems -
Colin Ophus
Associate Professor of Materials Science and Engineering and Center Fellow at the Precourt Institute for Energy
BioColin Ophus is an Associate Professor in the Department of Materials Science and Engineering and a Center Fellow at the Precourt Institute for Energy, Stanford University. He previously worked as a Staff Scientist at the National Center for Electron Microscopy (NCEM), part of the Molecular Foundry, at Lawrence Berkeley Lab. He was awarded a US Department of Energy (DOE) Early Career award in 2018, and the Burton medal from the Microscopy Society of America (MSA) in 2018. His research focuses on experimental methods, reconstruction algorithms, and software codes for simulation, analysis, and instrument design of transmission electron microscopy (TEM) and scanning TEM (STEM).
Colin advocates for open science and his group has developed open-source scientific software including as the Prismatic STEM simulation code and py4DSTEM analysis toolkit. He has taught many workshops around the world on topics ranging from scientific visualization to large scale data analysis. He also is the founder and editor-in-chief for a new journal based on interactive science communication named Elemental Microscopy. -
Leonard Ortolano
UPS Foundation Professor of Civil Engineering in Urban and Regional Planning, Emeritus
BioOrtolano is concerned with environmental and water resources policy and planning. His research stresses environmental policy implementation in developing countries and the role of non-governmental organizations in environmental management. His recent interests center on corporate environmental management.
-
Jim Plummer
John M. Fluke Professor of Electrical Engineering and Professor, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.
-
Eric Pop
Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics
Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.
-
Balaji Prabhakar
VMware Founders Professor of Computer Science, Professor of Electrical Engineering and, by courtesy, of Operations, Information and Technology at the Graduate School of Business
BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.
-
Ram Rajagopal
Associate Professor of Civil and Environmental Engineering and of Electrical Engineering
BioRam Rajagopal is an Associate Professor of Civil and Environmental Engineering at Stanford University, where he directs the Stanford Sustainable Systems Lab (S3L), focused on large-scale monitoring, data analytics and stochastic control for infrastructure networks, in particular, power networks. His current research interests in power systems are in the integration of renewables, smart distribution systems, and demand-side data analytics.
He holds a Ph.D. in Electrical Engineering and Computer Sciences and an M.A. in Statistics, both from the University of California Berkeley, Masters in Electrical and Computer Engineering from University of Texas, Austin and Bachelors in Electrical Engineering from the Federal University of Rio de Janeiro. He is a recipient of the NSF CAREER Award, Powell Foundation Fellowship, Berkeley Regents Fellowship and the Makhoul Conjecture Challenge award. He holds more than 30 patents and several best paper awards from his work and has advised or founded various companies in the fields of sensor networks, power systems, and data analytics. -
Byron Reeves
Paul C. Edwards Professor of Communication and Professor, by courtesy, of Education
BioByron Reeves, PhD, is the Paul C. Edwards Professor of Communication at Stanford and
Professor (by courtesy) in the Stanford School of Education. Byron has a long history of
experimental research on the psychological processing of media, and resulting responses and
effects. He has studied how media influence attention, memory and emotional responses and has
applied the research in the areas of speech dialogue systems, interactive games, advanced
displays, social robots, and autonomous cars. Byron has recently launched (with Stanford
colleagues Nilam Ram and Thomas Robinson) the Human Screenome Project (Nature, 2020),
designed to collect moment-by-moment changes in technology use across applications, platforms
and screens.
At Stanford, Byron has been Director of the Center for the Study of Language and Information,
and Co-Director of the H-STAR Institute (Human Sciences and Technologies Advanced
Research), and he was the founding Director of mediaX at Stanford, a university-industry
program launched in 2001 to facilitate discussion and research at the intersection of academic
and applied interests. Byron has worked at Microsoft Research and with several technology
startups, and has been involved with media policy at the FTC, FCC, US Congress and White
House. He is an elected Fellow of the International Communication Association, and recipient of ICA Fellows book award for The Media Equation (with Prof. Clifford Nass), and the Novim Foundation Epiphany Science and Society Award. Byron’s PhD in Communication is from Michigan State University. -
Stefan Reichelstein
William R. Timken Professor in the Graduate School of Business, Emeritus
BioStefan Reichelstein is known internationally for his research on the interface of management accounting and economics. Much of his work has addressed issues in cost- and profitability analysis, decentralization, internal pricing and performance measurement. His research projects have spanned analytical models, empirical work and field studies. Reichelstein’s papers have been published consistently in leading management and economic journals. Insights from his research have been applied by a range of corporations and government agencies. In recent years, Reichelstein has also studied the cost competitiveness of low-carbon energy solutions, with a particular focus on solar PV and carbon capture by fossile fuel power plants.
Stefan Reichelstein received his Ph.D. from the Kellogg School of Management at Northwestern University in 1984. Prior to that, he completed his undergraduate studies in economics at the University of Bonn in Germany. Over the past 30 years, Reichelstein has served on the faculties of the Haas School of Business at UC Berkeley, the University of Vienna in Austria, and the Stanford Graduate School of Business. His teaching has spanned financial and managerial accounting courses offered to undergraduate, MBA, and doctoral students. In recent years, he has introduced new courses on Sustainability and Clean Energy at the Stanford Business School. Reichelstein’s research has been supported by the National Science Foundation and a range of private foundations; several of his papers have won “Best-Paper” awards. Reichelstein serves on the editorial boards of several journals; he is also currently an editor of the Review of Accounting Studies and Foundations and Trends in Accounting. Until 2010, he served as the Department Editor for Accounting at Management Science. Professor Reichelstein has been a consultant to select companies and non-profit organizations. He has received honorary doctorates from the Universities of Fribourg (2008) and Mannheim (2011). In 2007, Reichelstein was appointed a Honorar-Professor at the University of Vienna. -
Marc Roston
Senior Research Scholar
Current Research and Scholarly InterestsClimate finance, carbon markets, carbon accounting, insurance and reinsurance.
-
Alberto Salleo
Hong Seh and Vivian W. M. Lim Professor
Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.
-
Krishna Saraswat
Rickey/Nielsen Professor in the School of Engineering and Professor, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsNew and innovative materials, structures, and process technology of semiconductor devices, interconnects for nanoelectronics and solar cells.
-
John Louis Sarrao
Director of the SLAC National Accelerator Laboratory, Professor of Photon Science, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering
BioJohn Sarrao became SLAC National Accelerator Laboratory’s sixth director in October 2023. The lab’s ~2,000 staff advance the frontiers of science by exploring how the universe works at the biggest, smallest, and fastest scales and invent powerful tools used by scientists around the globe. SLAC’s research helps solve real-world problems and advances the interests of the nation. SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. It is home to three Office of Science national user facilities: the Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser; the Stanford Synchrotron Radiation Lightsource (SSRL); and the Facility for Advanced Accelerator Experimental Tests, (FACET-II). SLAC hosts thousands of users each year and manages an annual budget of ~$700M. In addition to his role as lab director, John is a professor of photon science, and by courtesy, of materials science and engineering at Stanford University, a senior fellow at Stanford’s Precourt Institute, and dean of SLAC faculty.
John came to SLAC from Los Alamos National Laboratory (LANL) in New Mexico, where he served as the deputy director for science, technology, and engineering. In that role, he led multiple directorates, including chemistry, earth and life sciences, global security, physical sciences, and simulation and computation. He also stewarded technology transitions and served as LANL’s chief research officer in support of its national security mission. Before becoming deputy director, he served as associate director for theory, simulation, and computation and division leader for materials physics and applications at LANL.
John’s scientific research focus is superconductivity in materials. He studies the synthesis and characterization of correlated electron systems, especially actinide materials. He won the 2013 Department of Energy’s E.O. Lawrence Award and is a fellow of the American Association for the Advancement of Science, the American Physical Society, and LANL. John received his PhD and master’s degree in physics from the University of California, Los Angeles, and a bachelor’s degree in physics from Stanford University. -
Debbie Senesky
Associate Professor of Aeronautics and Astronautics, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy
BioDebbie G. Senesky is an Associate Professor at Stanford University in the Aeronautics and Astronautics Department and the Electrical Engineering Department. In addition, she is the Principal Investigator of the EXtreme Environment Microsystems Laboratory (XLab). Her research interests include the development of nanomaterials for extreme harsh environments, high-temperature electronics for Venus exploration, and microgravity synthesis of nanomaterials. In the past, she has held positions at GE Sensing (formerly known as NovaSensor), GE Global Research Center, and Hewlett Packard. She received the B.S. degree (2001) in mechanical engineering from the University of Southern California. She received the M.S. degree (2004) and Ph.D. degree (2007) in mechanical engineering from the University of California, Berkeley. Prof. Senesky is the Site Director of nano@stanford. She is currently the co-editor of two technical journals: IEEE Journal of Microelectromechanical Systems and Sensors. In recognition of her research, she received the Emerging Leader Abie Award from AnitaB.org in 2018, Early Faculty Career Award from the National Aeronautics and Space Administration (NASA) in 2012, Gabilan Faculty Fellowship Award in 2012, and Sloan Ph.D. Fellowship from the Alfred P. Sloan Foundation in 2004.
Prof. Senesky's career path and research has been featured by Scientific American, Seeker, People Behind the Science podcast, The Future of Everything radio show, Space.com, and NPR's Tell Me More program. More information about Prof. Senesky can be found at https://xlab.stanford.edu and on Instagram (@astrodebs). -
Olav Solgaard
Director, Edward L. Ginzton Laboratory and Robert L. and Audrey S. Hancock Professor in the School of Engineering
BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.
-
Andrew Spakowitz
Tang Family Foundation Chair of the Department of Chemical Engineering, Professor of Chemical Engineering, of Materials Science and Engineering and, by courtesy, of Applied Physics
Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials
-
Alfred M. Spormann
Professor of Civil and Environmental Engineering and of Chemical Engineering, Emeritus
Current Research and Scholarly InterestsMetabolism of anaerobic microbes in diseases, bioenergy, and bioremediation
-
Jonathan Stebbins
Professor of Geological Sciences, Emeritus
Current Research and Scholarly Interestsstructure and dynamics of crystalline, glassy, and molten inorganic materials and how these relate to geologically and technologically important properties and processes; solid state Nuclear Magnetic Resoance (NMR); mineralogy; igneous petrology; glass science
-
James Sweeney
Professor of Management Science & Engineering, Emeritus
Current Research and Scholarly InterestsDeterminants of energy efficiency opportunities, barriers, and policy options. Emphasis on behavioral issues, including personal, corporate, or organizational. Behavior may be motivated by economic incentives, social, or cultural factors, or more generally, by a combination of these factors. Systems analysis questions of energy use.
-
Joel Swisher
Adjunct Professor
BioJoel N. Swisher, PhD, PE, is Consulting Associate Professor of Civil and Environmental Engineering at Stanford University, where he teaches graduate-level courses on greenhouse gas (GHG) mitigation (covering technical and business strategies to manage GHG risks) and electric utility planning methods (covering supply and demand-side resources, resource integration and expansion planning). His current research at Stanford addresses the integration of plug-in vehicles with the power grid and the barriers and synergies related to metering, tariffs, load management, customer incentives, and charging infrastructure.
Dr. Swisher is also an independent consultant with over 30 years experience in research and consulting on many aspects of clean energy technology. He is an expert in energy efficiency technology and policy, carbon offsets and climate change mitigation, and electric utility resource planning and economics. He has consulted with numerous utilities, manufacturers and technology companies on resource planning, energy efficiency, vehicle electrification and clean energy deployment strategies. He has also helped consumer-oriented firms design strategies to expand simple cost-saving energy investment programs into brand-building corporate sustainability campaigns.
Dr. Swisher is a thought leader in several areas of clean energy technology and business strategy. As Director of Technical Services and CTO for Camco International, Dr. Swisher helped develop carbon offset projects in reforestation, agriculture, renewable energy and building energy efficiency, and he has authored emission inventories, baseline studies and monitoring and verification plans for multilateral banks and private offset buyers. Starting in 1989, Dr. Swisher performed seminal research on carbon offset baselines and technical and economic analysis of carbon offsets in the energy and land-use sectors.
Dr. Swisher was managing director of research and consulting at Rocky Mountain Institute (RMI), where he led RMI’s consulting team in work for numerous high-profile clients, including electric utilities and producers of goods ranging from semiconductor chips to potato chips. At RMI, he created the concept of the Smart Garage, which explores the energy system synergies in which vehicle electrification helps enable zero-emission vehicles and a cleaner power grid. He led an RMI team that convened an industrial consortium (including Alcoa, Johnson Controls, Google, etc.) to develop a new, lightweight, plug-in hybrid vehicle platform for Class 2 truck fleet applications. Collaborating with the design firm IDEO to conduct interdisciplinary design workshops, the RMI team initiated a working design to attract funding and move toward production, which proceeded as a spin-off company, Bright Automotive in Indiana.
Dr. Swisher holds a Ph.D. in Energy and Environmental Engineering from Stanford University. He is a registered Professional Engineer and speaks five languages. He is author of over 100 professional publications including The New Business Climate: A Guide to Lower Carbon Emissions and Better Business Performance and a bilingual (English and Portuguese) textbook on energy efficiency program design and evaluation and integrated energy resource planning. -
Clyde Tatum
Obayashi Professor in the School of Engineering, Emeritus
BioTatum's teaching interests are construction engineering and technical construction. His research focuses on construction process knowledge and integration and innovation in construction.
-
Hamdi Tchelepi
Max Steineke Professor and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsCurrent research activities: (1) model and simulate unstable miscible and immiscible fluid flow in heterogeneous porous media, (2) develop multiscale numerical solution algorithms for coupled mechanics and multiphase fluid flow in large-scale subsurface formations, and (3) develop stochastic solution methods that quantify the uncertainty associated with predictions of fluid-structure dynamics in porous media.
-
Shan X. Wang
Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
-
John Weyant
Professor (Research) of Management Science and Engineering and of Energy Science Engineering
BioJohn P. Weyant is Professor of Management Science and Engineering and Director of the Energy Modeling Forum (EMF) at Stanford University. He is also a Senior Fellow of the Precourt Institute for Energy and an an affiliated faculty member of the Stanford School of Earth, Environment and Energy Sciences, the Woods Institute for the Environment, and the Freeman-Spogli Institute for International Studies at Stanford. His current research focuses on analysis of multi-sector, multi-region coupled human and earth systems dynamics, global change systems analysis, energy technology assessment, and models for strategic planning.
Weyant was a founder and serves as chairman of the Integrated Assessment Modeling Consortium (IAMC), a seventeen-year old collaboration among over 60 member institutions from around the world. He has been an active adviser to the United Nations, the European Commission, U.S.Department of Energy, the U.S. Department of State, and the Environmental Protection Agency. In California, he has been and adviser to the California Air Resources, the California Energy Commission and the California Public Utilities Commission..
Weyant was awarded the US Association for Energy Economics’ 2008 Adelmann-Frankel award for unique and innovative contributions to the field of energy economics and the award for outstanding lifetime contributions to the Profession for 2017 from the International Association for Energy Economics, and a Life Time Achievement award from the Integrated Assessment Modeling Consortium in 2018. Weyant was honored in 2007 as a major contributor to the Nobel Peace prize awarded to the Intergovernmental Panel on Climate Change and in 2008 by Chairman Mary Nichols for contributions to the to the California Air Resources Board's Economic and Technology Advancement Advisory Committee on AB 32.
Fields of Specialization:
Energy/Environmental Policy Analysis, Strategic Planning
Interests:
Overall goal is to accelerate the use of systems models at state, country, and global scales, aiming to provide the best available information and insights to government and private-sector decision makers. Specific areas include energy, climate change, and sustainable development policy, including emerging technologies and market design alternatives. Draws on concepts and techniques from science and engineering fundamentals (e.g., thermodynamics, fluid mechanics, materials science, and electrical power systems), operations research, economics, finance, and decision theory. -
H.-S. Philip Wong
Willard R. and Inez Kerr Bell Professor in the School of Engineering
BioH.-S. Philip Wong is the Willard R. and Inez Kerr Bell Professor in the School of Engineering at Stanford University. He joined Stanford University as Professor of Electrical Engineering in 2004. From 1988 to 2004, he was with the IBM T.J. Watson Research Center. From 2018 to 2020, he was on leave from Stanford and was the Vice President of Corporate Research at TSMC, the largest semiconductor foundry in the world, and since 2020 remains the Chief Scientist of TSMC in a consulting, advisory role.
He is a Fellow of the IEEE and received the IEEE Andrew S. Grove Award, the IEEE Technical Field Award to honor individuals for outstanding contributions to solid-state devices and technology, as well as the IEEE Electron Devices Society J.J. Ebers Award, the society’s highest honor to recognize outstanding technical contributions to the field of electron devices that have made a lasting impact.
He is the founding Faculty Co-Director of the Stanford SystemX Alliance – an industrial affiliate program focused on building systems and the faculty director of the Stanford Nanofabrication Facility – a shared facility for device fabrication on the Stanford campus that serves academic, industrial, and governmental researchers across the U.S. and around the globe, sponsored in part by the National Science Foundation. He is the Principal Investigator of the Microelectronics Commons California-Pacific-Northwest AI Hardware Hub, a consortium of over 40 companies and academic institutions funded by the CHIPS Act. He is a member of the US Department of Commerce Industrial Advisory Committee on microelectronics. -
Jane Woodward
Adjunct Professor, Atmosphere and Energy
BioJane Woodward is an Adjunct Professor in the Department of Civil and Environmental Engineering at Stanford University where she has taught classes on energy and environment since 1991. She currently serves on the teaching teams for Understand Energy and Stanford Climate Ventures. Jane also serves on Stanford's Precourt Institute for Energy Advisory Council and has founded and continues to fund multiple sustainable energy education initiatives at the university.
Jane is a Founder and Managing Partner of WovenEarth Ventures, a US early-stage climate venture fund of funds. Additionally, she is an investor in several early-stage sustainable energy companies and funds, as well as an advisor and director for some of them.
Jane is a Founding Partner at MAP Energy, an energy investment firm currently focused on oil and gas royalty interests. MAP began investing in natural gas mineral rights in 1987, wind energy in 2004, utility scale solar in 2015, and energy storage in 2017. In December 2020, MAP sold its renewable energy and energy storage assets under management to Global Infrastructure Partners (GIP). The company remains one of the longest-standing private energy investment fund management firms in the US.
In 2016, Jane created The Foster Museum, a 14,000-square-foot art venue in Palo Alto, to share artist-explorer Tony Foster’s powerful exhibitions of watercolor journeys with an intention to inspire connection to the natural world.
Prior to founding MAP in 1987, Jane worked as an exploration geologist with ARCO Exploration Company and later as a petroleum engineering consultant to Stanford University’s endowment. Jane has a BS in Geology from UC Santa Barbara, an MS in Engineering and Petroleum Geology, and an MBA, both from Stanford University. -
Xiaolin Zheng
Professor of Mechanical Engineering, of Energy Science Engineering and, by courtesy, of Materials Science and Engineering
BioProfessor Zheng received her Ph.D. in Mechanical & Aerospace Engineering from Princeton University (2006), B.S. in Thermal Engineering from Tsinghua University (2000). Prior to joining Stanford in 2007, Professor Zheng did her postdoctoral work in the Department of Chemistry and Chemical Biology at Harvard University. Professor Zheng is a member of MRS, ACS and combustion institute. Professor Zheng received the TR35 Award from the MIT Technology Review (2013), one of the 100 Leading Global Thinkers by the Foreign Policy Magazine (2013), 3M Nontenured Faculty Grant Award (2013), the Presidential Early Career Award (PECASE) from the white house (2009), Young Investigator Awards from the ONR (2008), DARPA (2008), Terman Fellowship from Stanford (2007), and Bernard Lewis Fellowship from the Combustion Institute (2004).