Carl Magnus Fabian Mansson
Ph.D. Student in Chemistry, admitted Autumn 2018
All Publications
-
Aqueous Amine-Tolerant [2+2] Photocycloadditions of Unactivated Olefins.
Journal of the American Chemical Society
2022
Abstract
The Kochi-Salomon reaction is the only photochemical [2+2] cycloaddition capable of combining two electronically unactivated olefins into a cyclobutane. Yet, the reaction has remained largely unexplored and suffers many drawbacks, most notably an intolerance to Lewis/Bronsted basic amines and amides. Since these groups are ubiquitous in biologically active pharmaceuticals, an amine-tolerant Kochi-Salomon reaction would greatly facilitate rapid exploration of novel drug scaffolds. Herein, we disclose a transformation that is run in water with the most widely available Cu(II) salts and mineral acids. Furthermore, we apply this methodology to synthesize a variety of amine-containing cyclobutanes, including known and novel pharmacological analogues.
View details for DOI 10.1021/jacs.2c08778
View details for PubMedID 36269089
-
Mechanochemical synthesis of an elusive fluorinated polyacetylene.
Nature chemistry
2020
Abstract
Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
View details for DOI 10.1038/s41557-020-00608-8
View details for PubMedID 33349696