Bio


My research focuses on the use of satellite remote sensing technology to characterize multi-scale patterns of terrestrial biodiversity. I am interested in understanding how ecosystem structure and function changes for multiple taxonomic groups as a result of anthropogenic forces. These forces include land use change, climate change, establishing protected areas, the development of novel ecosystems, and assisted migration.

Lab Affiliations


Work Experience


  • Carnegie Airborne Observatory Researcher, Carnegie Institution for Science (April 1, 2009 - March 1, 2016)

    I performed research with the Carnegie Airborne Observatory and Carnegie Spectranomics Project to link measurements of leaf chemistry with airborne imaging spectroscopy data. Once we established these links, we used airborne and satellite data to measure the distribution of traits across large geographic scales in order to determine the underlying genetic, geologic, topographic and climatic drivers of plant functional diversity within tropical forests worldwide.

    Location

    260 Panama St, Stanford, CA, USA

All Publications


  • Large-scale climatic and geophysical controls on the leaf economics spectrum PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Vaughn, N. 2016; 113 (28): E4043-E4051

    Abstract

    Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P-LMA or N-P trade-offs in forest canopies; rather, we mapped a continuum of N-P-LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.

    View details for DOI 10.1073/pnas.1604863113

    View details for Web of Science ID 000379694100010

    View details for PubMedID 27354534

    View details for PubMedCentralID PMC4948348

  • Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data REMOTE SENSING Graves, S. J., Asner, G. P., Martin, R. E., Anderson, C. B., Colgan, M. S., Kalantari, L., Bohlman, S. A. 2016; 8 (2)

    View details for DOI 10.3390/rs8020161

    View details for Web of Science ID 000371898800001

  • Progressive forest canopy water loss during the 2012-2015 California drought PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Asner, G. P., Brodrick, P. G., Anderson, C. B., Vaughn, N., Knapp, D. E., Martin, R. E. 2016; 113 (2): E249-E255
  • Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy REMOTE SENSING OF ENVIRONMENT Somers, B., Asner, G. P., Martin, R. E., Anderson, C. B., Knapp, D. E., Wright, S. J., Van de Kerchove, R. 2015; 167: 111-120
  • Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy PLOS ONE Baldeck, C. A., Asner, G. P., Martin, R. E., Anderson, C. B., Knapp, D. E., Kellner, J. R., Wright, S. J. 2015; 10 (7)

    Abstract

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer's accuracies of 94-97% for the three focal species, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems.

    View details for DOI 10.1371/journal.pone.0118403

    View details for Web of Science ID 000358159700001

    View details for PubMedID 26153693

    View details for PubMedCentralID PMC4496029

  • Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy NATURE GEOSCIENCE Asner, G. P., Anderson, C. B., Martin, R. E., Tupayachi, R., Knapp, D. E., Sinca, F. 2015; 8 (7): 567-U114

    View details for DOI 10.1038/NGEO2443

    View details for Web of Science ID 000357404200022

  • Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica PLOS ONE Taylor, P., Asner, G., Dahlin, K., Anderson, C., Knapp, D., Martin, R., Mascaro, J., Chazdon, R., Cole, R., Wanek, W., Hofhansl, F., Malavassi, E., Vilchez-Alvarado, B., Townsend, A. 2015; 10 (6)

    Abstract

    Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes.

    View details for DOI 10.1371/journal.pone.0126748

    View details for Web of Science ID 000355979500016

    View details for PubMedID 26061884

    View details for PubMedCentralID PMC4465637

  • Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia PLOS ONE Higgins, M. A., Asner, G. P., Anderson, C. B., Martin, R. E., Knapp, D. E., Tupayachi, R., Perez, E., Elespuru, N., Alonso, A. 2015; 10 (3)

    Abstract

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.

    View details for DOI 10.1371/journal.pone.0119887

    View details for Web of Science ID 000352084200125

    View details for PubMedID 25793602

    View details for PubMedCentralID PMC4368595

  • Quantifying forest canopy traits: Imaging spectroscopy versus field survey REMOTE SENSING OF ENVIRONMENT Asner, G. P., Martin, R. E., Anderson, C. B., Knapp, D. E. 2015; 158: 15-27
  • Amazonian landscapes and the bias in field studies of forest structure and biomass PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., Tupayachi, R. 2014; 111 (48): E5224-E5232

    Abstract

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

    View details for DOI 10.1073/pnas.1412999111

    View details for Web of Science ID 000345920800012

    View details for PubMedID 25422434

    View details for PubMedCentralID PMC4260573

  • Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences of the United States of America Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Mascaro, J., Sinca, F., Chadwick, K. D., Higgins, M., Farfan, W., Llactayo, W., Silman, M. R. 2014; 111 (47): E5016-22

    Abstract

    Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations.

    View details for DOI 10.1073/pnas.1419550111

    View details for PubMedID 25385593

    View details for PubMedCentralID PMC4250114

  • Linking imaging spectroscopy and LiDAR with floristic composition and forest structure in Panama REMOTE SENSING OF ENVIRONMENT Higgins, M. A., Asner, G. P., Martin, R. E., Knapp, D. E., Anderson, C., Kennedy-Bowdoin, T., Saenz, R., Aguilar, A., Wright, S. J. 2014; 154: 358-367
  • Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region NEW PHYTOLOGIST Asner, G. P., Martin, R. E., Carranza-Jimenez, L., Sinca, F., Tupayachi, R., Anderson, C. B., Martinez, P. 2014; 204 (1): 127-139

    Abstract

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.

    View details for DOI 10.1111/nph.12895

    View details for Web of Science ID 000341193500015

    View details for PubMedID 24942328

  • Amazonian functional diversity from forest canopy chemical assembly PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Asner, G. P., Martin, R. E., Tupayachi, R., Anderson, C. B., Sinca, F., Carranza-Jimenez, L., Martinez, P. 2014; 111 (15): 5604-5609

    Abstract

    Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing foliage in 2,420 canopy tree species across 19 forests in the western Amazon, we discovered (i) systematic, community-scale shifts in average canopy chemical traits along gradients of elevation and soil fertility; (ii) strong phylogenetic partitioning of structural and defense chemicals within communities independent of variation in environmental conditions; and (iii) strong environmental control on foliar phosphorus and calcium, the two rock-derived elements limiting CO2 uptake in tropical forests. These findings indicate that the chemical diversity of western Amazonian forests occurs in a regionally nested mosaic driven by long-term chemical trait adjustment of communities to large-scale environmental filters, particularly soils and climate, and is supported by phylogenetic divergence of traits essential to foliar survival under varying environmental conditions. Geographically nested patterns of forest canopy chemical traits will play a role in determining the response and functional rearrangement of western Amazonian ecosystems to changing land use and climate.

    View details for DOI 10.1073/pnas.1401181111

    View details for Web of Science ID 000334288600046

    View details for PubMedID 24591585

    View details for PubMedCentralID PMC3992634

  • A Tale of Two "Forests": Random Forest Machine Learning Aids Tropical Forest Carbon Mapping PLOS ONE Mascaro, J., Asner, G. P., Knapp, D. E., Kennedy-Bowdoin, T., Martin, R. E., Anderson, C., Higgins, M., Chadwick, K. D. 2014; 9 (1)

    Abstract

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

    View details for DOI 10.1371/journal.pone.0085993

    View details for Web of Science ID 000330510000028

    View details for PubMedID 24489686

    View details for PubMedCentralID PMC3904849

  • Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient BIOGEOSCIENCES Asner, G. P., Anderson, C. B., Martin, R. E., Knapp, D. E., Tupayachi, R., Sinca, F., Malhi, Y. 2014; 11 (3): 843-856
  • Forest Canopy Gap Distributions in the Southern Peruvian Amazon PLOS ONE Asner, G. P., Kellner, J. R., Kennedy-Bowdoin, T., Knapp, D. E., Anderson, C., Martin, R. E. 2013; 8 (4)

    Abstract

    Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR), we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ) as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09), and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.

    View details for DOI 10.1371/journal.pone.0060875

    View details for Web of Science ID 000317563300009

    View details for PubMedID 23613748

    View details for PubMedCentralID PMC3626694

  • High-fidelity national carbon mapping for resource management and REDD+. Carbon balance and management Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., van Breugel, M., Davies, S., Hall, J. S., Muller-Landau, H. C., Potvin, C., Sousa, W., Wright, J., Bermingham, E. 2013; 8 (1): 7-?

    Abstract

    High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama - one of the first UN REDD + partner countries.Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide.The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection.

    View details for DOI 10.1186/1750-0680-8-7

    View details for PubMedID 23866822

    View details for PubMedCentralID PMC3717137

  • Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion REMOTE SENSING OF ENVIRONMENT Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T., Eastwood, M., Martin, R. E., Anderson, C., Field, C. B. 2012; 124: 454-465
  • Spectroscopy of canopy chemicals in humid tropical forests REMOTE SENSING OF ENVIRONMENT Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C., Carranza, L., Martinez, P., Houcheime, M., Sinca, F., Weiss, P. 2011; 115 (12): 3587-3598