Professional Education


  • Bachelor of Arts, Carleton College (2006)
  • Doctor of Philosophy, Massachusetts Institute of Technology (2012)

Stanford Advisors


All Publications


  • PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons ELIFE Richardson, C. E., Spilker, K. A., Cueva, J. G., Perrino, J., Goodman, M. B., Shen, K. 2014; 3
  • PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife Richardson, C. E., Spilker, K. A., Cueva, J. G., Perrino, J., Goodman, M. B., Shen, K. 2014; 3

    Abstract

    In neuronal processes, microtubules (MTs) provide structural support and serve as tracks for molecular motors. While it is known that neuronal MTs are more stable than MTs in non-neuronal cells, the molecular mechanisms underlying this stability are not fully understood. In this study, we used live fluorescence microscopy to show that the C. elegans CAMSAP protein PTRN-1 localizes to puncta along neuronal processes, stabilizes MT foci, and promotes MT polymerization in neurites. Electron microscopy revealed that ptrn-1 null mutants have fewer MTs and abnormal MT organization in the PLM neuron. Animals grown with a MT depolymerizing drug caused synthetic defects in neurite branching in the absence of ptrn-1 function, indicating that PTRN-1 promotes MT stability. Further, ptrn-1 null mutants exhibited aberrant neurite morphology and synaptic vesicle localization that is partially dependent on dlk-1. Our results suggest that PTRN-1 represents an important mechanism for promoting MT stability in neurons. DOI: http://dx.doi.org/10.7554/eLife.01498.001.

    View details for DOI 10.7554/eLife.01498

    View details for PubMedID 24569477