Bio


Cora Bernard is a Ph.D. student in the Department of Management Science & Engineering at Stanford University.

RESEARCH AREA: Health Policy

DISSERTATION TITLE: From Compartments to Networks: Model Complexity and Infectious Disease Policy

RESEARCH ABSTRACT: Cora Bernard's applied work has involved: design of mathematical models in Matlab and Python that simulate injection drug use, infectious disease, and incarceration systems to evaluate treatment, intervention, and jail-diversion policies. Her methods of work: assess the impact of structural sensitivity on public health models.

Honors & Awards


  • Lee B. Lusted Student Prize, Society for Medical Decision Making (2015)
  • PACCAR Inc Fellow, Stanford Graduate Fellowships (2013-2018)
  • Graduate Fellow, National Science Foundation (2013-2018)
  • Elizabeth Mills Crothers Prize in Literary Composition, UC Berkeley (2013)
  • Regent Scholar, UC Berkeley (2008-2013)
  • National Merit Scholar, National Merit Scholarship Corporation (2008)

Education & Certifications


  • MS, Stanford University, Statistics (2015)
  • BA, UC Berkeley, Applied Mathematics, Highest Distinction (2013)

Stanford Advisors


Personal Interests


Founder & President, Stanford Creative Writing Society

Work Experience


  • Research Assistant, Berkeley Seismological Laboratory (January 2010 - August 2013)

    Developed an interactive earthquake smartphone app to increase public awareness and safety.

    Location

    Berkeley, CA

  • Teaching Assistant, Stanford University (September 2014 - December 2014)

    Health Research and Policy 392: Analysis of Costs, Risks, and Benefits of Health Care

    Location

    Stanford, CA

All Publications


  • Estimation of the cost-effectiveness of HIV prevention portfolios for people who inject drugs in the United States: A model-based analysis. PLoS medicine Bernard, C. L., Owens, D. K., Goldhaber-Fiebert, J. D., Brandeau, M. L. 2017; 14 (5)

    Abstract

    The risks of HIV transmission associated with the opioid epidemic make cost-effective programs for people who inject drugs (PWID) a public health priority. Some of these programs have benefits beyond prevention of HIV-a critical consideration given that injection drug use is increasing across most United States demographic groups. To identify high-value HIV prevention program portfolios for US PWID, we consider combinations of four interventions with demonstrated efficacy: opioid agonist therapy (OAT), needle and syringe programs (NSPs), HIV testing and treatment (Test & Treat), and oral HIV pre-exposure prophylaxis (PrEP).We adapted an empirically calibrated dynamic compartmental model and used it to assess the discounted costs (in 2015 US dollars), health outcomes (HIV infections averted, change in HIV prevalence, and discounted quality-adjusted life years [QALYs]), and incremental cost-effectiveness ratios (ICERs) of the four prevention programs, considered singly and in combination over a 20-y time horizon. We obtained epidemiologic, economic, and health utility parameter estimates from the literature, previously published models, and expert opinion. We estimate that expansions of OAT, NSPs, and Test & Treat implemented singly up to 50% coverage levels can be cost-effective relative to the next highest coverage level (low, medium, and high at 40%, 45%, and 50%, respectively) and that OAT, which we assume to have immediate and direct health benefits for the individual, has the potential to be the highest value investment, even under scenarios where it prevents fewer infections than other programs. Although a model-based analysis can provide only estimates of health outcomes, we project that, over 20 y, 50% coverage with OAT could avert up to 22,000 (95% CI: 5,200, 46,000) infections and cost US$18,000 (95% CI: US$14,000, US$24,000) per QALY gained, 50% NSP coverage could avert up to 35,000 (95% CI: 8,900, 43,000) infections and cost US$25,000 (95% CI: US$7,000, US$76,000) per QALY gained, 50% Test & Treat coverage could avert up to 6,700 (95% CI: 1,200, 16,000) infections and cost US$27,000 (95% CI: US$15,000, US$48,000) per QALY gained, and 50% PrEP coverage could avert up to 37,000 (22,000, 58,000) infections and cost US$300,000 (95% CI: US$162,000, US$667,000) per QALY gained. When coverage expansions are allowed to include combined investment with other programs and are compared to the next best intervention, the model projects that scaling OAT coverage up to 50%, then scaling NSP coverage to 50%, then scaling Test & Treat coverage to 50% can be cost-effective, with each coverage expansion having the potential to cost less than US$50,000 per QALY gained relative to the next best portfolio. In probabilistic sensitivity analyses, 59% of portfolios prioritized the addition of OAT and 41% prioritized the addition of NSPs, while PrEP was not likely to be a priority nor a cost-effective addition. Our findings are intended to be illustrative, as data on achievable coverage are limited and, in practice, the expansion scenarios considered may exceed feasible levels. We assumed independence of interventions and constant returns to scale. Extensive sensitivity analyses allowed us to assess parameter sensitivity, but the use of a dynamic compartmental model limited the exploration of structural sensitivities.We estimate that OAT, NSPs, and Test & Treat, implemented singly or in combination, have the potential to effectively and cost-effectively prevent HIV in US PWID. PrEP is not likely to be cost-effective in this population, based on the scenarios we evaluated. While local budgets or policy may constrain feasible coverage levels for the various interventions, our findings suggest that investments in combined prevention programs can substantially reduce HIV transmission and improve health outcomes among PWID.

    View details for DOI 10.1371/journal.pmed.1002312

    View details for PubMedID 28542184

  • Cost-Effectiveness of HIV Preexposure Prophylaxis for People Who Inject Drugs in the United States ANNALS OF INTERNAL MEDICINE Bernard, C. L., Brandeau, M. L., Humphreys, K., Bendavid, E., Holodniy, M., Weyant, C., Owens, D. K., Goldhaber-Fiebert, J. D. 2016; 165 (1): 10-?

    View details for DOI 10.7326/M15-2634

    View details for Web of Science ID 000379215800003