Stanford Advisors


All Publications


  • Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proceedings of the National Academy of Sciences of the United States of America Liu, L., Rodriguez-Mateo, C., Huang, P., Huang, A., Lieu, A., Mao, M., Chung, M., Yang, S., Yu, K., Charville, G. W., Gan, Q., Rando, T. A. 2021; 118 (37)

    Abstract

    Skeletal muscle possesses remarkable regenerative ability because of the resident muscle stem cells (MuSCs). A prominent feature of quiescent MuSCs is a high content of heterochromatin. However, little is known about the mechanisms by which heterochromatin is maintained in MuSCs. By comparing gene-expression profiles from quiescent and activated MuSCs, we found that the mammalian Hairless (Hr) gene is expressed in quiescent MuSCs and rapidly down-regulated upon MuSC activation. Using a mouse model in which Hr can be specifically ablated in MuSCs, we demonstrate that Hr expression is critical for MuSC function and muscle regeneration. In MuSCs, loss of Hr results in reduced trimethylated Histone 3 Lysine 9 (H3K9me3) levels, reduced heterochromatin, increased susceptibility to genotoxic stress, and the accumulation of DNA damage. Deletion of Hr leads to an acceleration of the age-related decline in MuSC numbers. We have also demonstrated that despite the fact that Hr is homologous to a family of histone demethylases and binds to di- and trimethylated H3K9, the expression of Hr does not lead to H3K9 demethylation. In contrast, we show that the expression of Hr leads to the inhibition of the H3K9 demethylase Jmjd1a and an increase in H3K9 methylation. Taking these data together, our study has established that Hr is a H3K9 demethylase antagonist specifically expressed in quiescent MuSCs.

    View details for DOI 10.1073/pnas.2025281118

    View details for PubMedID 34493660

  • Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1 NATURE METABOLISM Brett, J. O., Arjona, M., Ikeda, M., Quarta, M., de Morree, A., Egner, I. M., Perandini, L. A., Ishak, H. D., Goshayeshi, A., Benjamin, D. I., Both, P., Rodriguez-Mateo, C., Betley, M. J., Wyss-Coray, T., Rando, T. A. 2020; 2 (4): 307-+
  • Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nature metabolism Brett, J. O., Arjona, M. n., Ikeda, M. n., Quarta, M. n., de Morrée, A. n., Egner, I. M., Perandini, L. A., Ishak, H. D., Goshayeshi, A. n., Benjamin, D. I., Both, P. n., Rodríguez-Mateo, C. n., Betley, M. J., Wyss-Coray, T. n., Rando, T. A. 2020; 2 (4): 307–17

    Abstract

    Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFβ signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.

    View details for DOI 10.1038/s42255-020-0190-0

    View details for PubMedID 32601609

    View details for PubMedCentralID PMC7323974