Academic Appointments

Professional Education

  • PhD, Harvard University, Physics (1979)
  • BA, Cornell University, Math and Physics (1975)

Current Research and Scholarly Interests

Evolutionary dynamics and cellular biophysics theory

2017-18 Courses

Stanford Advisees

Graduate and Fellowship Programs

All Publications

  • Lineage structure of the human antibody repertoire in response to influenza vaccination. Science translational medicine Jiang, N., He, J., Weinstein, J. A., Penland, L., Sasaki, S., He, X., Dekker, C. L., Zheng, N., Huang, M., Sullivan, M., Wilson, P. C., Greenberg, H. B., Davis, M. M., Fisher, D. S., Quake, S. R. 2013; 5 (171): 171ra19-?


    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, including that each B cell's genome encodes a distinct antibody sequence, that the antibody repertoire changes over time, and the high similarity between antibody sequences. We have addressed these challenges by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire, and measure age- and antigen-related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals' repertoires shows that elderly subjects have a decreased number of lineages but an increased prevaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system's clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects.

    View details for DOI 10.1126/scitranslmed.3004794

    View details for PubMedID 23390249

  • Determinism and stochasticity during maturation of the zebrafish antibody repertoire PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Jiang, N., Weinstein, J. A., Penland, L., White, R. A., Fisher, D. S., Quake, S. R. 2011; 108 (13): 5348-5353


    It is thought that the adaptive immune system of immature organisms follows a more deterministic program of antibody creation than is found in adults. We used high-throughput sequencing to characterize the diversifying antibody repertoire in zebrafish over five developmental time points. We found that the immune system begins in a highly stereotyped state with preferential use of a small number of V (variable) D (diverse) J (joining) gene segment combinations, but that this stereotypy decreases dramatically as the zebrafish mature, with many of the top VDJ combinations observed in 2-wk-old zebrafish virtually disappearing by 1 mo. However, we discovered that, in the primary repertoire, there are strong correlations in VDJ use that increase with zebrafish maturity, suggesting that VDJ recombination involves a level of deterministic programming that is unexpected. This stereotypy is masked by the complex diversification processes of antibody maturation; the variation and lack of correlation in full repertoires between individuals appears to be derived from randomness in clonal expansion during the affinity maturation process. These data provide a window into the mechanisms of VDJ recombination and diversity creation and allow us to better understand how the adaptive immune system achieves diversity.

    View details for DOI 10.1073/pnas.1014277108

    View details for Web of Science ID 000288894800043

    View details for PubMedID 21393572

  • Leading the dog of selection by its mutational nose PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Fisher, D. S. 2011; 108 (7): 2633-2634

    View details for DOI 10.1073/pnas.1100339108

    View details for Web of Science ID 000287377000004

    View details for PubMedID 21289281

  • Rate of Adaptation in Large Sexual Populations GENETICS Neher, R. A., Shraiman, B. I., Fisher, D. S. 2010; 184 (2): 467-481


    Adaptation often involves the acquisition of a large number of genomic changes that arise as mutations in single individuals. In asexual populations, combinations of mutations can fix only when they arise in the same lineage, but for populations in which genetic information is exchanged, beneficial mutations can arise in different individuals and be combined later. In large populations, when the product of the population size N and the total beneficial mutation rate U(b) is large, many new beneficial alleles can be segregating in the population simultaneously. We calculate the rate of adaptation, v, in several models of such sexual populations and show that v is linear in NU(b) only in sufficiently small populations. In large populations, v increases much more slowly as log NU(b). The prefactor of this logarithm, however, increases as the square of the recombination rate. This acceleration of adaptation by recombination implies a strong evolutionary advantage of sex.

    View details for DOI 10.1534/genetics.109.109009

    View details for Web of Science ID 000281884500014

    View details for PubMedID 19948891

  • The rate at which asexual populations cross fitness valleys THEORETICAL POPULATION BIOLOGY Weissman, D. B., Desai, M. M., Fisher, D. S., Feldman, M. W. 2009; 75 (4): 286-300


    Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis, whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by first acquiring the deleterious or neutral intermediates. Here, we present a complete, intuitive theoretical description of the valley-crossing process across the full spectrum of possible parameter regimes. We calculate the rate at which a population crosses a fitness valley or plateau of arbitrary width, as a function of the mutation rates, the population size, and the fitnesses of the intermediates. We find that when intermediates are close to neutral, a large population can cross even wide fitness valleys remarkably quickly, so that valley-crossing dynamics may be common even when mutations that directly increase fitness are also possible. Thus the evolutionary dynamics of large populations can be sensitive to the structure of an extended region of the fitness landscape - the population may not take directly uphill paths in favor of paths across valleys and plateaus that lead eventually to fitter genotypes. In smaller populations, we find that below a threshold size, which depends on the width of the fitness valley and the strength of selection against intermediate genotypes, valley-crossing is much less likely and hence the evolutionary dynamics are less influenced by distant regions of the fitness landscape.

    View details for DOI 10.1016/j.tpb.2009.02.006

    View details for Web of Science ID 000266833500009

    View details for PubMedID 19285994

  • High-Throughput Sequencing of the Zebrafish Antibody Repertoire SCIENCE Weinstein, J. A., Jiang, N., White, R. A., Fisher, D. S., Quake, S. R. 2009; 324 (5928): 807-810


    Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.

    View details for DOI 10.1126/science.1170020

    View details for Web of Science ID 000265832400053

    View details for PubMedID 19423829