All Publications


  • Enhancement-Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular De-Doping. Advanced materials (Deerfield Beach, Fla.) Keene, S. T., van der Pol, T. P., Zakhidov, D., Weijtens, C. H., Janssen, R. A., Salleo, A., van de Burgt, Y. 2020: e2000270

    Abstract

    Organic electrochemical transistors (OECTs) show great promise for flexible, low-cost, and low-voltage sensors for aqueous solutions. The majority of OECT devices are made using the polymer blend poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in which PEDOT is intrinsically doped due to inclusion of PSS. Because of this intrinsic doping, PEDOT:PSS OECTs generally operate in depletion mode, which results in a higher power consumption and limits stability. Here, a straightforward method to de-dope PEDOT:PSS using commercially available amine-based molecular de-dopants to achieve stable enhancement-mode OECTs is presented. The enhancement-mode OECTs show mobilities near that of pristine PEDOT:PSS (2 cm2 V-1 s-1 ) with stable operation over 1000 on/off cycles. The electron and proton exchange among PEDOT, PSS, and the molecular de-dopants are characterized to reveal the underlying chemical mechanism of the threshold voltage shift to negative voltages. Finally, the effect of the de-doping on the microstructure of the spin-cast PEDOT:PSS films is investigated.

    View details for DOI 10.1002/adma.202000270

    View details for PubMedID 32202010

  • Reversible Electrochemical Phase Change in Monolayer to Bulk-like MoTe2 by Ionic Liquid Gating. ACS nano Zakhidov, D., Rehn, D. A., Reed, E. J., Salleo, A. 2020

    Abstract

    Transition-metal dichalcogenides (TMDs) exist in various crystal structures with semiconducting, semi-metallic, and metallic properties. The dynamic control of these phases is of immediate interest for next-generation electronics such as phase change memories. Of the binary Mo and W-based TMDs, MoTe2 is attractive for electronic applications because it has the lowest energy difference (40 meV) between the semiconducting (2H) and semi-metallic (1T') phases, allowing for MoTe2 phase change by electrostatic doping. Here, we report phase change between the 2H and 1T' polymorphs of MoTe2 in thicknesses ranging from the monolayer to bulk-like case (73 nm) using an ionic liquid electrolyte at room temperature and in air. We find consistent evidence of a partially reversible 2H-1T' transition using in situ Raman spectroscopy where the phase change occurs in the topmost layers of the MoTe2 flake. We find a thickness-dependent transition voltage where higher voltages are necessary to drive the phase change for thicker flakes. We also show evidence of electrochemical activity during the gating process by observation of Te metal formation. This finding suggests the formation of Te vacancies which have been reported to lower the energy difference between the 2H and 1T' phases, potentially aiding the phase change process. Our discovery that the phase change can be achieved on the surface layer of bulk-like materials reveals that this electrochemical mechanism does not require isolation of a single layer and the effect may be more broadly applicable than previously thought.

    View details for DOI 10.1021/acsnano.9b07095

    View details for PubMedID 32045212