Clinical Focus

  • Diagnostic Radiology

Professional Education

  • Medical Education: Georgetown University School of Medicine (2008) DC
  • Residency: UC Davis Radiology Residency (2013) CA
  • Board Certification: American Board of Nuclear Medicine, Nuclear Medicine (2015)
  • Board Certification: American Board of Radiology, Neuroradiology (2015)
  • Fellowship: Stanford University Hospital (2015) CA
  • Board Certification: American Board of Radiology, Diagnostic Radiology (2013)
  • Internship: UC Davis Health System (2009) CA

All Publications

  • Neuroradiologic Evaluation of MRI in High-Contact Sports. Frontiers in neurology McAllister, D., Akers, C., Boldt, B., Mitchell, L. A., Tranvinh, E., Douglas, D., Goubran, M., Rosenberg, J., Georgiadis, M., Karimpoor, M., DiGiacomo, P., Mouchawar, N., Grant, G., Camarillo, D., Wintermark, M., Zeineh, M. M. 2021; 12: 701948


    Background and Purpose: Athletes participating in high-contact sports experience repeated head trauma. Anatomical findings, such as a cavum septum pellucidum, prominent CSF spaces, and hippocampal volume reductions, have been observed in cases of mild traumatic brain injury. The extent to which these neuroanatomical findings are associated with high-contact sports is unknown. The purpose of this study was to determine whether there are subtle neuroanatomic differences between athletes participating in high-contact sports compared to low-contact athletic controls. Materials and Methods: We performed longitudinal structural brain MRI scans in 63 football (high-contact) and 34 volleyball (low-contact control) male collegiate athletes with up to 4 years of follow-up, evaluating a total of 315 MRI scans. Board-certified neuroradiologists performed semi-quantitative visual analysis of neuroanatomic findings, including: cavum septum pellucidum type and size, extent of perivascular spaces, prominence of CSF spaces, white matter hyperintensities, arterial spin labeling perfusion asymmetries, fractional anisotropy holes, and hippocampal size. Results: At baseline, cavum septum pellucidum length was greater in football compared to volleyball controls (p = 0.02). All other comparisons were statistically equivalent after multiple comparison correction. Within football at baseline, the following trends that did not survive multiple comparison correction were observed: more years of prior football exposure exhibited a trend toward more perivascular spaces (p = 0.03 uncorrected), and lower baseline Standardized Concussion Assessment Tool scores toward more perivascular spaces (p = 0.02 uncorrected) and a smaller right hippocampal size (p = 0.02 uncorrected). Conclusion: Head impacts in high-contact sport (football) athletes may be associated with increased cavum septum pellucidum length compared to low-contact sport (volleyball) athletic controls. Other investigated neuroradiology metrics were generally equivalent between sports.

    View details for DOI 10.3389/fneur.2021.701948

    View details for PubMedID 34456852

    View details for PubMedCentralID PMC8385770

  • Neuroradiologic Evaluation of MRI in High-Contact Sports FRONTIERS IN NEUROLOGY McAllister, D., Akers, C., Boldt, B., Mitchell, L. A., Tranvinh, E., Douglas, D., Goubran, M., Rosenberg, J., Georgiadis, M., Karimpoor, M., DiGiacomo, P., Mouchawar, N., Grant, G., Camarillo, D., Wintermark, M., Zeineh, M. M. 2021; 12
  • EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. European journal of nuclear medicine and molecular imaging Morbelli, S., Esposito, G., Arbizu, J., Barthel, H., Boellaard, R., Bohnen, N. I., Brooks, D. J., Darcourt, J., Dickson, J. C., Douglas, D., Drzezga, A., Dubroff, J., Ekmekcioglu, O., Garibotto, V., Herscovitch, P., Kuo, P., Lammertsma, A., Pappata, S., Penuelas, I., Seibyl, J., Semah, F., Tossici-Bolt, L., Van de Giessen, E., Van Laere, K., Varrone, A., Wanner, M., Zubal, G., Law, I. 2020


    PURPOSE: This joint practice guideline or procedure standard was developed collaboratively by the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI). The goal of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of dopaminergic imaging in parkinsonian syndromes.METHODS: Currently nuclear medicine investigations can assess both presynaptic and postsynaptic function of dopaminergic synapses. To date both EANM and SNMMI have published procedural guidelines for dopamine transporter imaging with single photon emission computed tomography (SPECT) (in 2009 and 2011, respectively). An EANM guideline for D2 SPECT imaging is also available (2009). Since the publication of these previous guidelines, new lines of evidence have been made available on semiquantification, harmonization, comparison with normal datasets, and longitudinal analyses of dopamine transporter imaging with SPECT. Similarly, details on acquisition protocols and simplified quantification methods are now available for dopamine transporter imaging with PET, including recently developed fluorinated tracers. Finally, [18F]fluorodopa PET is now used in some centers for the differential diagnosis of parkinsonism, although procedural guidelines aiming to define standard procedures for [18F]fluorodopa imaging in this setting are still lacking.CONCLUSION: All these emerging issues are addressed in the present procedural guidelines for dopaminergic imaging in parkinsonian syndromes.

    View details for DOI 10.1007/s00259-020-04817-8

    View details for PubMedID 32388612

  • The Life of Don Shields: from Atmospheric Nuclear Tests to the Lunar Module AEROSPACE MEDICINE AND HUMAN PERFORMANCE Douglas, D. B., Cagle, Y. 2020; 91 (1): 56–58


    INTRODUCTION: In this article, we recount some aspects of the tremendous life of Don Shields. As a young Air Force pilot, Don Shields flew the B57 aircraft through the actual nuclear cloud during nuclear weapons blast explosions in Operation Dominic. The data he collected was of vital importance to our country's nuclear weapons program. Don Shields knew of the tremendous risk of radiation but served our country at the call of duty. After his military service, Don Shields served as the subject matter expert for the Apollo lunar module and worked directly with Commander Neil Armstrong and lunar module pilot Buzz Aldrin in training them on the module. During the Apollo 11 mission, Don Shields was being interviewed by Walter Cronkite on the epic Moon landing coverage. Unfortunately, later in life Don Shields suffered from cataracts and leukemia, both of which are known to be related to high radiation exposures. During his old age, Don Shields volunteered at the NASA Ames Museum and inspired generations of young individuals towards the space mission.Douglas DB, Cagle Y. The life of Don Shields: from atmospheric nuclear tests to the lunar module. Aerosp Med Hum Perform. 2020; 91(1):56-58.

    View details for DOI 10.3357/AMHP.5443.2020

    View details for Web of Science ID 000503723300010

    View details for PubMedID 31852576

  • Longitudinal alteration of cortical thickness and volume in high-impact sports. NeuroImage Mills, B. D., Goubran, M. n., Parivash, S. N., Dennis, E. L., Rezaii, P. n., Akers, C. n., Bian, W. n., Mitchell, L. A., Boldt, B. n., Douglas, D. n., Sami, S. n., Mouchawar, N. n., Wilson, E. W., DiGiacomo, P. n., Parekh, M. n., Do, H. n., Lopez, J. n., Rosenberg, J. n., Camarillo, D. n., Grant, G. n., Wintermark, M. n., Zeineh, M. n. 2020: 116864


    Collegiate football athletes are subject to repeated head impacts. The purpose of this study was to determine whether this exposure can lead to changes in brain structure. This prospective cohort study was conducted with up to 4 years of follow-up on 63 football (high-impact) and 34 volleyball (control) male collegiate athletes with a total of 315 MRI scans (after exclusions: football n=50, volleyball n= 24, total scans=273) using high-resolution structural imaging. Volumetric and cortical thickness estimates were derived using FreeSurfer 5.3's longitudinal pipeline. A linear mixed-effects model assessed the effect of group (football vs. volleyball), time from baseline MRI, and the interaction between group and time. We confirmed an expected developmental decrement in cortical thickness and volume in our cohort (p<0.001). Superimposed on this, total cortical gray matter volume (p = .03) and cortical thickness within the left hemisphere (p=.04) showed a group by time interaction, indicating less age-related volume reduction and thinning in football compared to volleyball athletes. At the regional level, sport by time interactions on thickness and volume were identified in the left orbitofrontal (p=.001), superior temporal (p=.001), and postcentral regions (p< .001). Additional cortical thickness interactions were found in the left temporal pole (p=.003) and cuneus (p=.005). At the regional level, we also found main effects of sport in football athletes characterized by reduced volume in the right hippocampus (p=.003), right superior parietal cortical gray (p<.001) and white matter (p<.001), and increased volume of the left pallidum (p=.002). Within football, cortical thickness was higher with greater years of prior play (left hemisphere p=.013, right hemisphere p=.005), and any history of concussion was associated with less cortical thinning (left hemisphere p=.010, right hemisphere p=.011). Additionally, both position-associated concussion risk (p=.002) and SCAT scores (p=.023) were associated with less of the expected volume decrement of deep gray structures. This prospective longitudinal study comparing football and volleyball athletes shows divergent age-related trajectories of cortical thinning, possibly reflecting an impact-related alteration of normal cortical development. This warrants future research into the underlying mechanisms of impacts to the head on cortical maturation.

    View details for DOI 10.1016/j.neuroimage.2020.116864

    View details for PubMedID 32360690

  • Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football JOURNAL OF NEUROTRAUMA Parivash, S. N., Goubran, M., Mills, B. D., Rezaii, P., Thaler, C., Wolman, D., Bian, W., Mitchell, L. A., Boldt, B., Douglas, D., Wilson, E. W., Choi, J., Xie, L., Yushkevich, P. A., DiGiacomo, P., Wongsripuemtet, J., Parekh, M., Fiehler, J., Do, H., Lopez, J., Rosenberg, J., Camarillo, D., Grant, G., Wintermark, M., Zeineh, M. 2019
  • Longitudinal changes in hippocampal subfield volume associated with collegiate football. Journal of neurotrauma Parivash, S. N., Goubran, M. n., Mills, B. D., Rezaii, P. n., Thaler, C. n., Wolman, D. n., Bian, W. n., Mitchell, L. A., Boldt, B. n., Douglas, D. n., Wilson, E. n., Choi, J. n., Xie, L. n., Yushkevich, P. n., Digiacomo, P. n., Wongsripuemtet, J. n., Parekh, M. n., Fiehler, J. n., Do, H. n., Lopez, J. n., Rosenerg, J. n., Camarillo, D. B., Grant, G. n., Wintermark, M. n., Zeineh, M. n. 2019


    Collegiate football athletes are subject to repeated head impacts that may cause brain injury. The hippocampus is composed of several distinct subfields with possible differential susceptibility to injury. The purpose of this study is to determine whether there are longitudinal changes in hippocampal subfield volume in collegiate football. A prospective cohort study was conducted over a 5-year period tracking 63 football and 34 volleyball male collegiate athletes. Athletes underwent high-resolution structural magnetic resonance imaging, and automated segmentation provided hippocampal subfield volumes. At baseline, football athletes demonstrated a smaller subiculum volume than volleyball athletes (-67.77 mm3, P=.012). A regression analysis performed within football athletes similarly demonstrated a smaller subiculum volume among those at increased concussion risk based on athlete position (P=.001). For the longitudinal analysis, a linear mixed-effects model assessed the interaction between sport and time, revealing a significant decrease in CA1 volume in football athletes without an in-study concussion compared to volleyball athletes (volume difference per year=-35.22 mm3, P=.005). This decrease in CA1 volume over time was significant when football athletes were examined in isolation from volleyball athletes (P=.011). Thus, this prospective longitudinal study showed a decrease in CA1 volume over time in football athletes, in addition to baseline differences that were identified in the downstream subiculum. Hippocampal changes may have important implications for high-contact sports.

    View details for PubMedID 31044639

  • Reconsidering Spatial Priors In EEG Source Estimation Does White Matter Contribute to EEG Rhythms? Douglas, P. K., Douglas, D. B., IEEE IEEE. 2019: 88–99
  • Neuroimaging of Traumatic Brain Injury. Medical sciences (Basel, Switzerland) Douglas, D. B., Ro, T., Toffoli, T., Krawchuk, B., Muldermans, J., Gullo, J., Dulberger, A., Anderson, A. E., Douglas, P. K., Wintermark, M. 2018; 7 (1)


    The purpose of this article is to review conventional and advanced neuroimaging techniques performed in the setting of traumatic brain injury (TBI). The primary goal for the treatment of patients with suspected TBI is to prevent secondary injury. In the setting of a moderate to severe TBI, the most appropriate initial neuroimaging examination is a noncontrast head computed tomography (CT), which can reveal life-threatening injuries and direct emergent neurosurgical intervention. We will focus much of the article on advanced neuroimaging techniques including perfusion imaging and diffusion tensor imaging and discuss their potentials and challenges. We believe that advanced neuroimaging techniques may improve the accuracy of diagnosis of TBI and improve management of TBI.

    View details for PubMedID 30577545

  • Neuroimaging of brain trauma CURRENT OPINION IN NEUROLOGY Douglas, D. B., Muldermans, J. L., Wintermark, M. 2018; 31 (4): 362-370
  • Neuroimaging of brain trauma. Current opinion in neurology Douglas, D. B., Muldermans, J. L., Wintermark, M. 2018


    PURPOSE OF REVIEW: The purpose of this review is to provide an update on advanced neuroimaging techniques in traumatic brain injury (TBI). We will focus this review on recent literature published within the last 18 months and the advanced neuroimaging techniques of perfusion imaging and diffusion tensor imaging (DTI).RECENT FINDINGS: In the setting of a moderate or severe acute closed head injury (Glasgow Coma Scale <13), the most appropriate neuroimaging study is a noncontrast computed tomography (CT) scan. In the setting of mild TBI, the indication for neuroimaging can be determined using the New Orleans Criteria or Canadian CT Head Rules or National Emergency X-Ray Utilization Study-II clinical criteria. Two advanced neuroimaging techniques that are currently being researched in TBI include perfusion imaging and DTI. Perfusion CT has a higher sensitivity for detecting cerebral contusions than noncontrast CT examinations. DTI is a sensitive at detecting TBI at the group level (TBI-group versus control group), but there is insufficient evidence to suggest that DTI plays a clinical role for diagnosing mild TBI at the individual patient level.SUMMARY: Future research in advanced neuroimaging techniques including perfusion imaging and DTI may improve the accuracy of the diagnosis and prognosis as well as improve the management of TBI.

    View details for PubMedID 29878909

  • Perfusion Imaging in Acute Traumatic Brain Injury NEUROIMAGING CLINICS OF NORTH AMERICA Douglas, D. B., Chaudhari, R., Zhao, J. M., Gullo, J., Kirkland, J., Douglas, P. K., Wolin, E., Walroth, J., Wintermark, M. 2018; 28 (1): 55-+


    Traumatic brain injury (TBI) is a significant problem worldwide and neuroimaging plays a critical role in diagnosis and management. Recently, perfusion neuroimaging techniques have been explored in TBI to determine and characterize potential perfusion neuroimaging biomarkers to aid in diagnosis, treatment, and prognosis. In this article, computed tomography (CT) bolus perfusion, MR imaging bolus perfusion, MR imaging arterial spin labeling perfusion, and xenon CT are reviewed with a focus on their applications in acute TBI. Future research directions are also discussed.

    View details for PubMedID 29157853

  • Hemispheric brain asymmetry differences in youths with attention-deficit/hyperactivity disorder NEUROIMAGE-CLINICAL Douglas, P. K., Gutman, B., Anderson, A., Larios, C., Lawrence, K. E., Narr, K., Sengupta, B., Cooray, G., Douglas, D. B., Thompson, P. M., McGough, J. J., Bookheimer, S. Y. 2018; 18: 744–52


    Attention-deficit hyperactive disorder (ADHD) is the most common neurodevelopmental disorder in children. Diagnosis is currently based on behavioral criteria, but magnetic resonance imaging (MRI) of the brain is increasingly used in ADHD research. To date however, MRI studies have provided mixed results in ADHD patients, particularly with respect to the laterality of findings.We studied 849 children and adolescents (ages 6-21 y.o.) diagnosed with ADHD (n = 341) and age-matched typically developing (TD) controls with structural brain MRI. We calculated volumetric measures from 34 cortical and 14 non-cortical brain regions per hemisphere, and detailed shape morphometry of subcortical nuclei. Diffusion tensor imaging (DTI) data were collected for a subset of 104 subjects; from these, we calculated mean diffusivity and fractional anisotropy of white matter tracts. Group comparisons were made for within-hemisphere (right/left) and between hemisphere asymmetry indices (AI) for each measure.DTI mean diffusivity AI group differences were significant in cingulum, inferior and superior longitudinal fasciculus, and cortico-spinal tracts (p < 0.001) with the effect of stimulant treatment tending to reduce these patterns of asymmetry differences. Gray matter volumes were more asymmetric in medication free ADHD individuals compared to TD in twelve cortical regions and two non-cortical volumes studied (p < 0.05). Morphometric analyses revealed that caudate, hippocampus, thalamus, and amygdala were more asymmetric (p < 0.0001) in ADHD individuals compared to TD, and that asymmetry differences were more significant than lateralized comparisons.Brain asymmetry measures allow each individual to serve as their own control, diminishing variability between individuals and when pooling data across sites. Asymmetry group differences were more significant than lateralized comparisons between ADHD and TD subjects across morphometric, volumetric, and DTI comparisons.

    View details for PubMedID 29876263

  • Addressing Obstetrical Challenges at 12 Rural Ugandan Health Facilities: Findings from an International Ultrasound and Skills Development Training for Midwives in Uganda. International journal of MCH and AIDS Kinnevey, C., Kawooya, M., Tumwesigye, T., Douglas, D., Sams, S. 2016; 5 (1): 46-52


    Like much of Sub-Saharan Africa, Uganda is facing significant maternal and fetal health challenges. Despite the fact that the majority of the Uganda population is rural and the major obstetrical care provider is the midwife, there is a lack of data in the literature regarding rural health facilities' and midwives' knowledge of ultrasound technology and perspectives on important maternal health issues such as deficiencies in prenatal services.A survey of the current antenatal diagnostic and management capabilities of midwives at 12 rural Ugandan health facilities was performed as part of an international program initiated to provide ultrasound machines and formal training in their use to midwives at antenatal care clinics.The survey revealed that the majority of pregnant women attend less than the recommended minimum of four antenatal care visits. There were significant knowledge deficits in many prenatal conditions that require ultrasound for early diagnosis, such as placenta previa and macrosomia. The cost of providing ultrasound machines and formal training to 12 midwives was $6,888 per powered rural health facility and $8,288 for non-powered rural health facilities in which solar power was required to maintain ultrasound.In order to more successfully meet Millennium Development Goal 4 (reduce child mortality), 5 (improve maternal health) and 6 (combat HIV) through decreasing maternal to child transmission of HIV, the primary healthcare provider, which is the midwife in Uganda, must be competent at the diagnosis and management of a wide spectrum of obstetrical challenges. A trained ultrasound-based approach to obstetrical care is a cost effective method to take on these goals.

    View details for PubMedID 28058192

  • Correlation between arterial spin labeling MRI and dynamic FDG on PET-MR in Alzheimer's disease and non-Alzhiemer's disease patients. EJNMMI physics Douglas, D., Goubran, M., Wilson, E., Xu, G., Tripathi, P., Holley, D., Chao, S., Wintermark, M., Quon, A., Zeineh, M., Vasanawala, M., Zaharchuk, G. 2015; 2: A83-?

    View details for DOI 10.1186/2197-7364-2-S1-A83

    View details for PubMedID 26956345

  • Assessment of PET & ASL metabolism in the hippocampal subfields of MCI and AD using simultaneous PET-MR. EJNMMI physics Goubran, M., Douglas, D., Chao, S., Quon, A., Tripathi, P., Holley, D., Vasanawala, M., Zaharchuk, G., Zeineh, M. 2015; 2: A73-?

    View details for DOI 10.1186/2197-7364-2-S1-A73

    View details for PubMedID 26956334

  • Diffusion Tensor Imaging of TBI: Potentials and Challenges. Topics in magnetic resonance imaging Douglas, D. B., Iv, M., Douglas, P. K., Anderson, A., Vos, S. B., Bammer, R., Zeineh, M., Wintermark, M. 2015; 24 (5): 241-251


    Neuroimaging plays a critical role in the setting in traumatic brain injury (TBI). Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging technique that is capable of providing rich information on the brain's neuroanatomic connectome. The purpose of this article is to systematically review the role of DTI and advanced diffusion techniques in the setting of TBI, including diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging, diffusion spectrum imaging, and q-ball imaging. We discuss clinical applications of DTI and review the DTI literature as it pertains to TBI. Despite the continued advancements in DTI and related diffusion techniques over the past 20 years, DTI techniques are sensitive for TBI at the group level only and there is insufficient evidence that DTI plays a role at the individual level. We conclude by discussing future directions in DTI research in TBI including the role of machine learning in the pattern classification of TBI.

    View details for DOI 10.1097/RMR.0000000000000062

    View details for PubMedID 26502306

  • The negative predictive value of Amyloid Imaging in differentiating patient's with depression and prodromal Alzheimer's diseas Xu, G., Douglas, D., Greer, M., Quon, A. SOC NUCLEAR MEDICINE INC. 2015
  • Is there a correlation between white matter disease and amyloid burden? Douglas, D., Xu, G., Greer, M., Quon, A. SOC NUCLEAR MEDICINE INC. 2015