Professional Education


  • Doctor of Philosophy, Peking University (2018)
  • Bachelor of Science, Nanjing University (2013)

All Publications


  • Monolithic optical microlithography of high-density elastic circuits. Science (New York, N.Y.) Zheng, Y. Q., Liu, Y., Zhong, D., Nikzad, S., Liu, S., Yu, Z., Liu, D., Wu, H. C., Zhu, C., Li, J., Tran, H., Tok, J. B., Bao, Z. 2021; 373 (6550): 88-94

    Abstract

    Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.

    View details for DOI 10.1126/science.abh3551

    View details for PubMedID 34210882