Bio


My research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.

Academic Appointments


Administrative Appointments


  • Bass University Fellow in Undergraduate Education, Stanford University (2023 - Present)
  • Associate Chair, Department of Geophysics, Stanford University (2023 - Present)
  • Associate Professor, Department of Geophysics, Stanford University (2022 - Present)
  • Associate Professor, Department of Electrical Engineering, Stanford University (2022 - Present)
  • Senior Fellow, Stanford Woods Institute for the Environment (2022 - Present)
  • Senior Member, Kavli Institute for Particle Astrophysics and Cosmology (2021 - Present)
  • Faculty Affiliate, Stanford Institute for Human-Centered Artificial Intelligence (2020 - Present)
  • Faculty Affiliate, Stanford Data Science (2022 - Present)
  • Assistant Professor, Department of Geophysics, Stanford University (2016 - 2022)
  • Assistant Professor (by courtesy), Department of Electrical Engineering, Stanford University (2017 - 2022)
  • Center Fellow (by courtesy), Stanford Woods Institute for the Environment (2020 - 2022)
  • Faculty Affiliate, Stanford Woods Institute for the Environment (2016 - 2020)
  • Radar Systems Engineer, Jet Propulsion Laboratory, California Institute of Technology (2014 - 2016)

Honors & Awards


  • Distinguished Service Award, National Science Olympiad (2022)
  • Symposium Prize Paper Award, IEEE Geoscience and Remote Sensing Society (2021)
  • Excellence in Teaching Award, Stanford School of Earth, Energy, and Environmental Sciences (2020)
  • Senior Member, Institute of Electrical and Electronics Engineers (2019)
  • CAREER Award, National Science Foundation (2018)
  • LInC Fellow, Stanford Woods Institute for the Environment (2018)
  • Fredrick E. Terman Fellowship, Stanford University (2016)
  • Science Team Member, Mini-RF Radar, Lunar Reconnaissance Orbiter, NASA (2016)
  • Science Team Member, REASON Radar Sounder, Europa Mission, NASA (2015)
  • JPL Team Award, Europa Mission Instrument Proposal (2015)
  • Best Graduate Student Paper Award, Jackson School of Geosciences (2014)
  • Heart of Gold Award for Service to Science Education, National Science Olympiad (2014)
  • Best Ph.D. Student Poster Award, Jackson School of Geosciences (2013)
  • Best Ph.D. Student Speaker Award, Jackson School of Geosciences (2013)
  • NASA Group Achievement Award, Operation Ice Bridge (2012)
  • David Brunton Jr. Felloswhip, University of Texas Graduate School (2012)
  • Gale White Fellowship, University of Texas Institute for Geophysics (2012)
  • Antarctic Service Medal, National Science Foundation (2011)
  • The Friar Society, University of Texas (2010)
  • Graduate Research Fellowship Program, National Science Foundation (2009)
  • Recruiting Fellowship, University of Texas Graduate School (2008)
  • Thelma Johnson Showalter Prize, Bucknell Univiersity (2007)
  • Phi Beta Kappa, Bucknell University (2007)
  • Tau Beta Pi, Bucknell University (2006)
  • Sigma Pi Sigma, Bucknell University (2006)
  • Meritorious Winner, COMAP Mathematical Contest in Modeling (2005)

Boards, Advisory Committees, Professional Organizations


  • Board Member, California Council on Science and Technology (2023 - Present)
  • Co-Chair, Instruments & Future Technologies Committee, IEEE GRSS (2021 - Present)
  • Associate Editor, IEEE Transactions on Geoscience and Remote Sensing (2020 - Present)
  • Council Member, International Glaciological Society (2019 - Present)
  • Scientific Editor, Journal of Glaciology (2019 - Present)
  • Member, Interiors Working Group, Europa Mission, NASA (2015 - Present)
  • Chair, National Science Olympiad Earth and Space Science Committee (2014 - Present)
  • Co-Chair, Interiors Working Group, Europa Clipper Mission, NASA (2020 - 2023)
  • Co-Lead, Active Microwave - Radar and SAR Working Group, Instruments & Future Technologies Comm. IEEE GRSS (2020 - 2023)
  • Senator, Stanford Faculty Senate (2018 - 2022)
  • Member, Solid Earth Response and influence on Cryosphere Evolution Steering Committee (2016 - 2022)
  • Lead, Passive Sounding Working Group, Radar for Icy Moon Exploration, ESA (2015 - 2018)
  • Member, International Glaciological Society (2008 - Present)
  • Member, American Geophysical Union (2008 - Present)
  • Member, IEEE Antennas and Propagation Society (2008 - Present)
  • Member, Society of Exploration Geophysicists (2008 - Present)
  • Member, IEEE Geoscience and Remote Sensing Society (2008 - Present)

Professional Education


  • Ph.D., University of Texas at Austin, Geophysics (2014)
  • B.S.E.E., Bucknell University, Electrical Engineering (2007)
  • B.A., Bucknell University, Physics (2007)

2023-24 Courses


Stanford Advisees


All Publications


  • Feasibility of Passive Sounding of Uranian Moons Using Uranian Kilometric Radiation EARTH AND SPACE SCIENCE Romero-Wolf, A., Steinbrugge, G., Castillo-Rogez, J., Cochrane, C. J., Nordheim, T. A., Mitchell, K. L., Wolfenbarger, N. S., Schroeder, D. M., Peters, S. 2024; 11 (2)
  • Heterogeneous Basal Thermal Conditions Underpinning the Adélie-George V Coast, East Antarctica GEOPHYSICAL RESEARCH LETTERS Dawson, E. J., Schroeder, D. M., Chu, W., Mantelli, E., Seroussi, H. 2024; 51 (2)
  • Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics REVIEWS OF GEOPHYSICS Aitken, A. A., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M., Anandakrishnan, S., Dawson, E. J., Wiens, D. A., Eisen, O., Siegert, M. J. 2023; 61 (3)
  • Exploring the Interior of Europa with the Europa Clipper. Space science reviews Roberts, J. H., McKinnon, W. B., Elder, C. M., Tobie, G., Biersteker, J. B., Young, D., Park, R. S., Steinbrügge, G., Nimmo, F., Howell, S. M., Castillo-Rogez, J. C., Cable, M. L., Abrahams, J. N., Bland, M. T., Chivers, C., Cochrane, C. J., Dombard, A. J., Ernst, C., Genova, A., Gerekos, C., Glein, C., Harris, C. D., Hay, H. C., Hayne, P. O., Hedman, M., Hussmann, H., Jia, X., Khurana, K., Kiefer, W. S., Kirk, R., Kivelson, M., Lawrence, J., Leonard, E. J., Lunine, J. I., Mazarico, E., McCord, T. B., McEwen, A., Paty, C., Quick, L. C., Raymond, C. A., Retherford, K. D., Roth, L., Rymer, A., Saur, J., Scanlan, K., Schroeder, D. M., Senske, D. A., Shao, W., Soderlund, K., Spiers, E., Styczinski, M. J., Tortora, P., Vance, S. D., Villarreal, M. N., Weiss, B. P., Westlake, J. H., Withers, P., Wolfenbarger, N., Buratti, B., Korth, H., Pappalardo, R. T. 2023; 219 (6): 46

    Abstract

    The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

    View details for DOI 10.1007/s11214-023-00990-y

    View details for PubMedID 37636325

    View details for PubMedCentralID PMC10457249

  • Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data EARTH SYSTEM SCIENCE DATA Fremand, A. C., Fretwell, P., Bodart, J. A., Pritchard, H. D., Aitken, A., Bamber, J. L., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Christianson, K., Conway, H., Corr, H. J., Cui, X., Damaske, D., Damm, V., Drews, R., Eagles, G., Eisen, O., Eisermann, H., Ferraccioli, F., Field, E., Forsberg, R., Franke, S., Fujita, S., Gim, Y., Goel, V., Gogineni, S., Greenbaum, J., Hills, B., Hindmarsh, R. A., Hoffman, A. O., Holmlund, P., Holschuh, N., Holt, J. W., Horlings, A. N., Humbert, A., Jacobel, R. W., Jansen, D., Jenkins, A., Jokat, W., Jordan, T., King, E., Kohler, J., Krabill, W., Gillespie, M., Langley, K., Lee, J., Leitchenkov, G., Leuschen, C., Luyendyk, B., MacGregor, J., MacKie, E., Matsuoka, K., Morlighem, M., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Paden, J., Pattyn, F., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Ruppel, A., Schroeder, D. M., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tabacco, I., Tinto, K., Urbini, S., Vaughan, D., Welch, B. C., Wilson, D. S., Young, D. A., Zirizzotti, A. 2023; 15 (7): 2695-2710
  • The Phase Response of a Rough Rectangular Facet for Radar Sounder Simulations of Both Coherent and Incoherent Scattering RADIO SCIENCE Gerekos, C., Haynes, M. S., Schroeder, D. M., Blankenship, D. D. 2023; 58 (6)
  • Paths forward in radioglaciology ANNALS OF GLACIOLOGY Schroeder, D. M. 2023

    View details for DOI 10.1017/aog.2023.3

    View details for Web of Science ID 000949605900001

  • Radar Attenuation in Enceladus' Ice Shell: Obstacles and Opportunities for Constraining Shell Thickness, Chemistry, and Thermal Structure JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS Soucek, O., Behounkova, M., Schroeder, D. M., Wolfenbarger, N. S., Kalousova, K., Steinbrugge, G., Soderlund, K. M. 2023; 128 (2)
  • DEM GENERATOR FROM SINGLE SWATH RADARGRAMS Garcia, M., Schroeder, D. M., Bovolo, F., IEEE IEEE. 2023: 2588-2591
  • Bistatic Radar Tomography of Shear Margins: Simulated Temperature and Basal Material Inversions IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Bienert, N., Schroeder, D. M., Summers, P. 2023; 61
  • Joint Active and Passive Microwave Thermometry of Ice Sheets IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Broome, A. L., Schroeder, D. M., Johnson, J. T. 2023; 61
  • DIGITAL TOOLS FOR ANALOG DATA: RECONSTRUCTING THE FIRST ICE-PENETRATING RADAR SURVEYS OF ANTARCTICA AND GREENLAND Teisberg, T. O., Schroeder, D. M., IEEE IEEE. 2023: 44-47
  • FIRST RESULTS FROM MAPPERR: THE MULTI-FREQUENCY ACTIVE PASSIVE POLAR EXPLORATION RADAR-RADIOMETER Broome, A. L., Schroeder, D. M., Johnson, J. T., IEEE IEEE. 2023: 36-39
  • SOURCE AVAILABILITY AND BANDWIDTH CONSTRAINTS ON TERRESTRIAL PASSIVE RADAR EXPERIMENTS USING JOVIAN DECAMETRIC RADIATION Nessly, K., Peters, S., Smithtro, C., Steinbrfigge, G., Schroeder, D., Romero-Wolf, A., IEEE IEEE. 2023: 4214-4217
  • Shallow Fracture Buffers High Elevation Runoff in Northwest Greenland GEOPHYSICAL RESEARCH LETTERS Culberu, R., Chu, W., Schroeder, D. M. 2022; 49 (23)
  • Ice mass loss sensitivity to the Antarctic ice sheet basal thermal state. Nature communications Dawson, E. J., Schroeder, D. M., Chu, W., Mantelli, E., Seroussi, H. 2022; 13 (1): 4957

    Abstract

    Sea-level rise projections rely on accurate predictions of ice mass loss from Antarctica. Climate change promotes greater mass loss by destabilizing ice shelves and accelerating the discharge of upstream grounded ice. Mass loss is further exacerbated by mechanisms such as the Marine Ice Sheet Instability and the Marine Ice Cliff Instability. However, the effect of basal thermal state changes of grounded ice remains largely unexplored. Here, we use numerical ice sheet modeling to investigate how warmer basal temperatures could affect the Antarctic ice sheet mass balance. We find increased mass loss in response to idealized basal thawing experiments run over 100 years. Most notably, frozen-bed patches could be tenuously sustaining the current ice configuration in parts of George V, Adelie, Enderby, and Kemp Land regions of East Antarctica. With less than 5 degrees of basal warming, these frozen patches may begin to thaw, producing new loci of mass loss.

    View details for DOI 10.1038/s41467-022-32632-2

    View details for PubMedID 36104329

  • Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica CRYOSPHERE Hager, A. O., Hoffman, M. J., Price, S. F., Schroeder, D. M. 2022; 16 (9): 3575-3599
  • Radar Characterization of Ice Crystal Orientation Fabric and Anisotropic Viscosity Within an Antarctic Ice Stream JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Jordan, T. M., Martin, C., Brisbourne, A. M., Schroeder, D. M., Smith, A. M. 2022; 127 (6)
  • Double ridge formation over shallow water sills on Jupiter's moon Europa. Nature communications Culberg, R., Schroeder, D. M., Steinbrugge, G. 2022; 13 (1): 2007

    Abstract

    Jupiter's moon Europa is a prime candidate for extraterrestrial habitability in our solar system. The surface landforms of its ice shell express the subsurface structure, dynamics, and exchange governing this potential. Double ridges are the most common surface feature on Europa and occur across every sector of the moon, but their formation is poorly understood, with current hypotheses providing competing and incomplete mechanisms for the development of their distinct morphology. Here we present the discovery and analysis of a double ridge in Northwest Greenland with the same gravity-scaled geometry as those found on Europa. Using surface elevation and radar sounding data, we show that this double ridge was formed by successive refreezing, pressurization, and fracture of a shallow water sill within the ice sheet. If the same process is responsible for Europa's double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa's ice shell.

    View details for DOI 10.1038/s41467-022-29458-3

    View details for PubMedID 35440535

  • An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry CRYOSPHERE Miller, J. Z., Culberg, R., Long, D. G., Shuman, C. A., Schroeder, D. M., Brodzik, M. J. 2022; 16 (1): 103-125
  • Post-Processing Synchronized Bistatic Radar for Long Offset Glacier Sounding IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Bienert, N. L., Schroeder, D. M., Peters, S. T., MacKie, E. J., Dawson, E. J., Siegfried, M. R., Sanda, R., Christoffersen, P. 2022; 60
  • SAR FOCUSING OF MOBILE APRES SURVEYS Kapai, S., Schroeder, D., Broome, A., Young, T., Stewart, C., IEEE IEEE. 2022: 1688-1691
  • INVERTING FOR FIRN AQUIFER PROPERTIES FROM ICE-PENETRATING RADAR DATA Culberg, R., Schroeder, D. M., IEEE IEEE. 2022: 1332-1335
  • QUANTIFYING THE COMPLIMENTARY SENSITIVITIES OF ACTIVE AND PASSIVE MICROWAVE MEASUREMENTS TO ICE-SHEET THERMAL SIGNATURES Broome, A. L., Schroeder, D. M., Johnson, J. T., IEEE IEEE. 2022: 8028-8031
  • SFMCW ORTHOGONAL WAVE BEAMFORMING CONCEPT FOR DISTRIBUTED ORBITAL SOUNDING Bienert, N., Haynes, M. S., Schroeder, D. M., Beauchamp, R. M., IEEE IEEE. 2022: 84-87
  • DEVELOPMENT OF A UAV-BORNE PULSED ICE-PENETRATING RADAR SYSTEM Teisberg, T. O., Schroeder, D. M., Broome, A. L., Lurie, F., Woo, D., IEEE IEEE. 2022: 7405-7408
  • EMPIRICAL CHARACTERIZATION OF SURFACE CREVASSE CLUTTER IN MULTI-FREQUENCY AIRBORNE ICE-PENETRATING RADAR DATA Altenburg, M., Culberg, R., Schroeder, D. M., IEEE IEEE. 2022: 1684-1687
  • PROCESSING AND DETECTING ARTIFACTS IN MULTI-INPUT MULTI-OUTPUT PHASE-SENSITIVE ICE PENETRATING RADAR DATA McLeod, A. A., Peters, S. T., Culberg, R., Schroeder, D. M., Bienert, N. L., Chu, W., Young, T., Christoffersen, P., IEEE IEEE. 2022: 3786-3789
  • SIDE-FACING UHF-BAND RADAR SYSTEM TO MONITOR TREE WATER STATUS Rao, K., Ulloa, Y. J., Bienert, N., Chiariello, N. R., Holtzman, N. M., Quetin, G. R., Peters, S. T., Winstein, K., Castelletti, D., Schroeder, D. M., Konings, A. G., IEEE IEEE. 2022: 5559-5562
  • REVISITING THE LIMITS OF SPATIAL COHERENCE FOR PASSIVE RADAR SOUNDING USING RADIO-ASTRONOMICAL SOURCES Peters, S. T., Roberts, T., Nessly, K., Schroeder, D. M., Romero-Wolf, A., IEEE IEEE. 2022: 3880-3883
  • Altimetry Measurements From Planetary Radar Sounders and Application to SHARAD on Mars IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Steinbrugge, G., Haynes, M. S., Schroeder, D. M., Scanlan, K. M., Stark, A., Young, D. A., Grima, C., Kempf, S., Ng, G., Buhl, D., Voigt, J. C., Roatsch, T., Blankenship, D. D. 2022; 60
  • Radiometric analysis of digitized Z-scope records in archival radar sounding film JOURNAL OF GLACIOLOGY Schroeder, D. M., Broome, A. L., Conger, A., Lynch, A., Mackie, E. J., Tarzona, A. 2021
  • Passive Synthetic Aperture Radar Imaging Using Radio-Astronomical Sources IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Peters, S. T., Schroeder, D. M., Haynes, M. S., Castelletti, D., Romero-Wolf, A. 2021; 59 (11): 9144-9159
  • A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene EARTH SYSTEM SCIENCE DATA Cavitte, M. P., Young, D. A., Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L., Tozer, C. R., Schroeder, D. M., Blankenship, D. D. 2021; 13 (10): 4759-4777
  • Alternatives to Liquid Water Beneath the South Polar Ice Cap of Mars GEOPHYSICAL RESEARCH LETTERS Schroeder, D. M., Steinbrugge, G. 2021; 48 (19)
  • Multisystem Synthesis of Radar Sounding Observations of the Amundsen Sea Sector From the 2004-2005 Field Season. Journal of geophysical research. Earth surface Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi, H., Young, D. A., Blankenship, D. D., Vaughan, D. G. 2021; 126 (10): e2021JF006296

    Abstract

    The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross-basin analysis that investigates the basal conditions across the Pine Island-Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from -24.8 to +37.4 dB with the highest values beneath fast-flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along-flow. Together, these findings highlight the potential for joint airborne radar analysis with ground-based seismic and geomorphological observations to understand variations in the bed properties and cross-catchment interactions of ice streams and outlet glaciers.

    View details for DOI 10.1029/2021JF006296

    View details for PubMedID 35865452

    View details for PubMedCentralID PMC9286636

  • Permanent Scatterers in Repeat-Pass Airborne VHF Radar Sounder for Layer-Velocity Estimation IEEE GEOSCIENCE AND REMOTE SENSING LETTERS Castelletti, D., Schroeder, D. M., Jordan, T. M., Young, D. 2021; 18 (10): 1766-1770
  • Multisystem Synthesis of Radar Sounding Observations of the Amundsen Sea Sector From the 2004-2005 Field Season JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi, H., Young, D. A., Blankenship, D. D., Vaughan, D. G. 2021; 126 (10)
  • Conditioning Jovian Burst Signals for Passive Sounding Applications IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Roberts, T., Romero-Wolf, A., Bruzzone, L., Carrer, L., Peters, S., Schroeder, D. M. 2021
  • Five decades of radioglaciology (vol 61, pg 1, 2020) ANNALS OF GLACIOLOGY Schroeder, D. M., Bingham, R. G., Blankenship, D. D., Christianson, K., Eisen, O., Flowers, G. E., Karlsson, N. B., Koutnik, M. R., Paden, J. D., Siegert, M. J. 2021; 62 (85-86): 390
  • Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site CRYOSPHERE Young, T., Martin, C., Christoffersen, P., Schroeder, D. M., Tulaczyk, S. M., Dawson, E. J. 2021; 15 (8): 4117-4133
  • A Radiometrically Precise Multi-Frequency Ice-Penetrating Radar Architecture IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Broome, A. L., Schroeder, D. M. 2021
  • Glaciological Monitoring Using the Sun as a Radio Source for Echo Detection GEOPHYSICAL RESEARCH LETTERS Peters, S. T., Schroeder, D. M., Chu, W., Castelletti, D., Haynes, M. S., Christoffersen, P., Romero-Wolf, A. 2021; 48 (14)
  • Radar-Sounding Characterization of the Subglacial Groundwater Table Beneath Hiawatha Glacier, Greenland GEOPHYSICAL RESEARCH LETTERS Bessette, J. T., Schroeder, D. M., Jordan, T. M., MacGregor, J. A. 2021; 48 (10)
  • Inferring Ice Fabric From Birefringence Loss in Airborne Radargrams: Application to the Eastern Shear Margin of Thwaites Glacier, West Antarctica JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Young, T. J., Schroeder, D. M., Jordan, T. M., Christoffersen, P., Tulaczyk, S. M., Culberg, R., Bienert, N. L. 2021; 126 (5)
  • Analysis of Temporal and Structural Characteristics of Jovian Radio Emissions for Passive Radar Sounding of Jupiters Icy Moons IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Carrer, L., Schroeder, D. M., Romero-Wolf, A., Ries, P. A., Bruzzone, L. 2021; 59 (5): 3857-3874
  • Extreme melt season ice layers reduce firn permeability across Greenland. Nature communications Culberg, R., Schroeder, D. M., Chu, W. 2021; 12 (1): 2336

    Abstract

    Surface meltwater runoff dominates present-day mass loss from the Greenland Ice Sheet. In Greenland's interior, porous firn can limit runoff by retaining meltwater unless perched low-permeability horizons, such as ice slabs, develop and restrict percolation. Recent observations suggest that such horizons might develop rapidly during extreme melt seasons. Here we present radar sounding evidence that an extensive near surface melt layer formed following the extreme melt season in 2012. This layer was still present in 2017 in regions up to 700m higher in elevation and 160km further inland than known ice slabs. We find that melt layer formation is driven by local, short-timescale thermal and hydrologic processes in addition to mean climate state. These melt layers reduce vertical percolation pathways, and, under appropriate firn temperature and surface melt conditions, encourage further ice aggregation at their horizon. Therefore, the frequency of extreme melt seasons relative to the rate at which pore space and cold content regenerates above the most recent melt layer may be a key determinant of the firn's multi-year response to surface melt.

    View details for DOI 10.1038/s41467-021-22656-5

    View details for PubMedID 33879796

  • Stochastic modeling of subglacial topography exposes uncertainty in water routing at Jakobshavn Glacier JOURNAL OF GLACIOLOGY MacKie, E. J., Schroeder, D. M., Zuo, C., Yin, Z., Caers, J. 2021; 67 (261): 75–83
  • Challenges on Mercury's Interior Structure Posed by the New Measurements of its Obliquity and Tides GEOPHYSICAL RESEARCH LETTERS Steinbrugge, G., Dumberry, M., Rivoldini, A., Schubert, G., Cao, H., Schroeder, D., Soderlund, K. 2021; 48 (3)

    View details for DOI 10.1029/2020GL089895

  • Interpreting englacial layer deformation in the presence of complex ice flow history with synthetic radargrams ANNALS OF GLACIOLOGY Elsworth, C. W., Schroeder, D. M., Siegfried, M. R. 2020; 61 (81): 206–13
  • Automated detection and characterization of Antarctic basal units using radar sounding data: demonstration in Institute Ice Stream, West Antarctica ANNALS OF GLACIOLOGY Goldberg, M. L., Schroeder, D. M., Castelletti, D., Mantelli, E., Ross, N., Siegert, M. J. 2020; 61 (81): 242–48
  • Five decades of radioglaciology ANNALS OF GLACIOLOGY Schroeder, D. M., Bingham, R. G., Blankenship, D. D., Christianson, K., Eisen, O., Flowers, G. E., Karlsson, N. B., Koutnik, M. R., Paden, J. D., Siegert, M. J. 2020; 61 (81): 1–13
  • A comparison of automated approaches to extracting englacial-layer geometry from radar data across ice sheets ANNALS OF GLACIOLOGY Delf, R., Schroeder, D. M., Curtis, A., Giannopoulos, A., Bingham, R. G. 2020; 61 (81): 234–41
  • Reflections on the anomalous ANITA events: the Antarctic subsurface as a possible explanation ANNALS OF GLACIOLOGY Shoemaker, I. M., Kusenko, A., Kuipers Munneke, P., Romero-Wolf, A., Schroeder, D. M., Siegert, M. J. 2020; 61 (81): 92–98
  • Geospatial simulations of airborne ice-penetrating radar surveying reveal elevation under-measurement bias for ice-sheet bed topography ANNALS OF GLACIOLOGY Bartlett, O. T., Palmer, S. J., Schroeder, D. M., MacKie, E. J., Barrows, T. T., Graham, A. C. 2020; 61 (81): 46–57
  • Estimation of ice fabric within Whillans Ice Stream using polarimetric phase-sensitive radar sounding ANNALS OF GLACIOLOGY Jordan, T. M., Schroeder, D. M., Elsworth, C. W., Siegfried, M. R. 2020; 61 (81): 74–83

    View details for DOI 10.1017/aog.2020.6

    View details for Web of Science ID 000565350800008

  • Assessing the detectability of Europa’s eutectic zone using radar sounding Icarus Culha, C., Schroeder, D. M., Jordan, T. M., Haynes, M. S. 2020; 339 (0019-1035)
  • A NARROWBAND MULTI-FREQUENCY RADAR SOUNDING ARCHITECTURE TO CORRECT SUBSURFACE INTERFACE ROUGHNESS EFFECTS Broome, A. L., Schroeder, D. M., IEEE IEEE. 2020: 1428-1431
  • GEOSTATISTICALLY SIMULATING SUBGLACIAL TOPOGRAPHY WITH SYNTHETIC TRAINING DATA MacKie, E. J., Schroeder, D. M., IEEE IEEE. 2020: 2991-2994
  • STRONG POTENTIAL FOR THE DETECTION OF REFROZEN ICE LAYERS IN GREENLAND'S FIRN BY AIRBORNE RADAR SOUNDING Culberg, R., Schroeder, D. M., IEEE IEEE. 2020: 7033-7036
  • PATHWAYS TO MULTITEMPORAL RADAR SOUNDING IN TERRESTRIAL GLACIOLOGY Schroeder, D. M., IEEE IEEE. 2020: 3731-3734
  • PROCESSING-BASED SYNCHRONIZATION APPROACH FOR BISTATIC RADAR GLACIAL TOMOGRAPHY Bienert, N. L., Schroeder, D. M., Peters, S. T., Siegfried, M. R., IEEE IEEE. 2020: 1420-1423
  • Firn Clutter Constraints on the Design and Performance of Orbital Radar Ice Sounders IEEE Transactions on Geoscience and Remote Sensing Culberg, R., Schroeder, D. M. 2020: 1-18
  • Passive radio sounding to correct for Europa's ionospheric distortion of VHF signals Planetary and Space Science Peters, S. T., Schroeder, D. M., Romero-Wolf, A. 2020
  • Layer optimized SAR processing and slope estimation in radar sounder data JOURNAL OF GLACIOLOGY Castelletti, D., Schroeder, D. M., Mantelli, E., Hilger, A. 2019; 65 (254): 983–88
  • A subglacial hydrologic drainage hypothesis for silt sorting and deposition during retreat in Pine Island Bay ANNALS OF GLACIOLOGY Schroeder, D. M., MacKie, E. J., Creyts, T. T., Anderson, J. B. 2019; 60 (80): 14–20
  • Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology CRYOSPHERE Cooper, M. A., Jordan, T. M., Schroeder, D. M., Siegert, M. J., Williams, C. N., Bamber, J. L. 2019; 13 (11): 3093–3115
  • A Polarimetric Coherence Method to Determine Ice Crystal Orientation Fabric From Radar Sounding: Application to the NEEM Ice Core Region IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Jordan, T. M., Schroeder, D. M., Castelletti, D., Li, J., Dall, J. 2019; 57 (11): 8641–57
  • Sustained Antarctic Research: A 21st Century Imperative ONE EARTH Kennicutt, M. C., Bromwich, D., Liggett, D., Njastad, B., Peck, L., Rintoul, S. R., Ritz, C., Siegert, M. J., Aitken, A., Brooks, C. M., Cassano, J., Chaturvedi, S., Chen, D., Dodds, K., Golledge, N. R., Le Bohec, C., Leppe, M., Murray, A., Nath, P., Raphael, M. N., Rogan-Finnemore, M., Schroeder, D. M., Talley, L., Travouillon, T., Vaughan, D. G., Wang, L., Weatherwax, A. T., Yang, H., Chown, S. L. 2019; 1 (1): 95-113
  • Radar-Detected Englacial Debris in the West Antarctic Ice Sheet GEOPHYSICAL RESEARCH LETTERS Winter, K., Woodward, J., Ross, N., Dunning, S. A., Hein, A. S., Westoby, M. J., Culberg, R., Marrero, S. M., Schroeder, D. M., Sugden, D. E., Siegert, M. J. 2019
  • Seismology with Dark Data: Image-Based Processing of Analog Records Using Machine Learning for the Rangely Earthquake Control Experiment SEISMOLOGICAL RESEARCH LETTERS Wang, K., Ellsworth, W. L., Beroza, G. C., Williams, G., Zhang, M., Schroeder, D., Rubinstein, J. 2019; 90 (2): 553–62

    View details for DOI 10.1785/0220180298

    View details for Web of Science ID 000460125100013

  • Doppler-based discrimination of radar sounder target scattering properties: A case study of subsurface water geometry in Europa's ice shell Icarus Michaelides, R., Schroeder, D. M. 2019
  • REVISTING THE LIMITS OF AZIMUTH PROCESSING GAIN FOR RADAR SOUNDING Schroeder, D. M., Castelletti, D., Pena, I., IEEE IEEE. 2019: 994–96
  • RADAR SCATTERING IN FIRN AND ITS IMPLICATIONS FOR VHF/UHF ORBITAL ICE SOUNDING Culberg, R., Schroeder, D. M., IEEE IEEE. 2019: 4137–40
  • TWO DIMENSIONAL IMAGE FORMATION WITH PASSIVE RADAR USING THE SUN FOR ECHO DETECTION Peters, S. T., Schroeder, D. M., Castelletti, D., Haynes, M. S., Romero-Wolf, A., IEEE IEEE. 2019: 10091–94
  • Multidecadal observations of the Antarctic ice sheet from restored analog radar records. Proceedings of the National Academy of Sciences of the United States of America Schroeder, D. M., Dowdeswell, J. A., Siegert, M. J., Bingham, R. G., Chu, W. n., MacKie, E. J., Siegfried, M. R., Vega, K. I., Emmons, J. R., Winstein, K. n. 2019

    Abstract

    Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.

    View details for DOI 10.1073/pnas.1821646116

    View details for PubMedID 31481619

  • In Situ Demonstration of a Passive Radio Sounding Approach Using the Sun for Echo Detection IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Peters, S. T., Schroeder, D. M., Castelletti, D., Haynes, M., Romero-Wolf, A. 2018; 56 (12): 7338–49
  • Geometric Power Fall-Off in Radar Sounding IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Haynes, M. S., Chapin, E., Schroeder, D. M. 2018; 56 (11): 6571–85
  • A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes CRYOSPHERE Jordan, T. M., Williams, C. N., Schroeder, D. M., Martos, Y. M., Cooper, M. A., Siegert, M. J., Paden, J. D., Huybrechts, P., Bamber, J. L. 2018; 12 (9): 2831–54
  • Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar JOURNAL OF GLACIOLOGY Young, T., Schroeder, D. M., Christoffersen, P., Lok, L., Nicholls, K. W., Brennan, P. V., Doyle, S. H., Hubbard, B., Hubbard, A. 2018; 64 (246): 649–60
  • Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic. Science advances Rutishauser, A., Blankenship, D. D., Sharp, M., Skidmore, M. L., Greenbaum, J. S., Grima, C., Schroeder, D. M., Dowdeswell, J. A., Young, D. A. 2018; 4 (4): eaar4353

    Abstract

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than -10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.

    View details for DOI 10.1126/sciadv.aar4353

    View details for PubMedID 29651462

    View details for PubMedCentralID PMC5895444

  • Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic Science Advances Rutishauser, A., Blankenship, D. D., Sharp, M., Skidmore, M. L., Greenbaum, J. S., Grima, C., Schroeder, D. M., Dowdeswell, J. A., Young, D. A. 2018: eaar4353

    Abstract

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than -10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.

    View details for DOI 10.1126/sciadv.aar4353

    View details for PubMedCentralID PMC5895444

  • UNFOCUSED SAR PROCESSING FOR ENGLACIAL LAYER SLOPE ESTIMATION USING RADAR SOUNDER DATA Castelletti, D., Schroeder, D. M., Mantelli, E., Hilger, A., IEEE IEEE. 2018: 4150–53
  • FIRST IN-SITU DEMONSTRATION OF PASSIVE RADIO SOUNDING USING THE SUN AS A SOURCE FOR ECHO DETECTION Peters, S. T., Schroeder, D. M., Castelletti, D., Haynes, M., Romero-Wolf, A., IEEE IEEE. 2018: 4154–57
  • Retrieval of Englacial Firn Aquifer Thickness from Ice-Penetrating Radar Sounding in Southeastern Greenland Geophysical Research Letters Chu, W., Schroeder, D. M., Siegfried, M. R. 2018
  • Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland Geophysical Research Letters Kendrick, A. K., Schroeder, D. M., Chu, W., Young, T. J., Christoffersen, P., Todd, J., Doyle, S. H., Box, J. E., Hubbard, A., Hubbard, B., Brennan, P. V., Nicholls, K. W., Lok, L. B. 2018

    View details for DOI 10.1029/2018GL079787

  • A Constraint Upon the Basal Water Distribution and Basal Thermal State of the Greenland Ice Sheet from Radar Bed-Echoes The Cryosphere Jordan, T. M., Williams, C. N., Schroeder, D. M., Martos, Y. M., Cooper, M. A., Siegert, M. J., Paden, J. D., Hyybrechts, P., Bamber, J. L. 2018

    View details for DOI 10.5194/tc-2018-53

  • Geometric Power Fall-off in Radar Sounding IEEE Transactions in Geoscience and Remote Sensing Haynes, M., Chapin, E., Schroeder, D. M. 2018
  • Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar Journal of Glaciology Young, T., Schroeder, D. M., Christoffersen, P. V., Lok, L., Nicholls, K. W., Brennan, P. V., Doyle, S. H., Hubbard, B., Hubbard, A. 2018
  • In-Situ Demonstration of a Passive Radio Sounding Approach Using the Sun for Echo Detection, IEEE Transactions in Geoscience and Remote Sensing Peters, S. T., Schroeder, D. M., Castelletti, D., Haynes, M., Romero-Wolf, A. 2018
  • Complex Basal Thermal Transition Near the Onset of Petermann Glacier, Greenland Journal of Geophysical Research Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., Bell, R. E. 2018
  • Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS Kalousova, K., Schroeder, D. M., Soderlund, K. M. 2017; 122 (3): 524-545
  • Bright prospects for radar detection of Europa's ocean ICARUS Aglyamov, Y., Schroeder, D. M., Vance, S. D. 2017; 281: 334-337
  • An Interferometric Approach to Cross-Track Clutter Detection in Two-Channel VHF Radar Sounders IEEE Transactions on Geoscience and Remote Sensing Castelletti, D., Schroeder, D. M., Hensley, S., Grima, C., Ng, G., Young, D., Gim, Y., Bruzzone, L., Moussessian, A., Blankenship, D. D. 2017
  • Ocean access beneath the southwest tributary of Pine Island Glacier, West Antarctica Annals of Glaciology Schroeder, D. M., Hilger, A. M., Paden, J. D., Young, D. A., Corr, H. F. 2017

    View details for DOI 10.1017/aog.2017.45

  • Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data Earth and Planetary Science Letters Steinbruegge, G., Schroeder, D. M., Haynes, M. S., Hussmann, H., Grima, C., Blankenship, D. D. 2017
  • Mars radar clutter and surface roughness characteristics from MARSIS data Icarus Campbell, B. A., Schroeder, D. M., Whitten, J. L. 2017
  • Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland The Cryosphere Jordan, T. M., Cooper, M. A., Schroeder, D. M., Williams, C. N., Paden, J. D., Siegert, M. J., Bamber, J. L. 2017
  • Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure Journal of Geophysical Research: Planets Kalousova, K., Schroeder, D. M., Soderlund, K. M. 2017

    View details for DOI 10.1002/2016JE005110

  • Extensive winter subglacial water storage beneath the Greenland Ice Sheet GEOPHYSICAL RESEARCH LETTERS Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., Palmer, S. J., Bell, R. E. 2016; 43 (24): 12484-12492
  • Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON PLANETARY AND SPACE SCIENCE Schroeder, D. M., Romero-Wolf, A., Carrer, L., Grima, C., Campbell, B. A., Kofman, W., Bruzzone, L., Blankenship, D. D. 2016; 134: 52-60
  • Prospects of passive radio detection of a subsurface ocean on Europa with a lander PLANETARY AND SPACE SCIENCE Romero-Wolf, A., Schroeder, D. M., Ries, P., Bills, B. G., Naudet, C., Scott, B. R., Treuhaft, R., Vance, S. 2016; 129: 118-121
  • Subglacial controls on the flow of Institute Ice Stream, West Antarctica ANNALS OF GLACIOLOGY Siegert, M. J., Ross, N., Li, J., Schroeder, D. M., Rippin, D., Ashmore, D., Bingham, R., Gogineni, P. 2016; 57 (73): 19-24
  • Evidence for Variable Grounding-Zone and Shear-Margin Basal Conditions Across Thwaites Glacier, West Antarctica Geophysics Schroeder, D. M., Grima, G., Blankenship, D. D. 2016; 81 (1)
  • Adaptively constraining radar attenuation and temperature across the Thwaites Glacier catchment using bed echoes JOURNAL OF GLACIOLOGY Schroeder, D. M., Seroussi, H., Chu, W., Young, D. A. 2016; 62 (236): 1075-1082
  • Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica Nature Communications Khazendar, A., Rignot, E., Schroeder, D. M., Seroussi, H., Seuchl, B., Mouginot, J., Sutterley, T. C., Velicogna, I. 2016
  • Deep radiostratigraphy of the East Antarctic plateau: connecting the Dome C and Vostok ice core sites JOURNAL OF GLACIOLOGY Cavitte, M. G., Blankenship, D. D., Young, D. A., Schroeder, D. M., Parrenin, F., Lemeur, E., MacGregor, J. A., Siegert, M. J. 2016; 62 (232): 323-334
  • Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON Planetary and Space Science Schroeder, D. M., Romero-Wolf, A., Carrer, L., Grima, C., Campbell, B. A., Kofman, W., Bruzzone, L., Blankenship, D. D. 2016
  • Radar signal propagation through the ionosphere of Europa PLANETARY AND SPACE SCIENCE Grima, C., Blankenship, D. D., Schroeder, D. M. 2015; 117: 421-428
  • Ocean access to a cavity beneath Totten Glacier in East Antarctica NATURE GEOSCIENCE Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R., Legresy, B., Schroeder, D. M., Warner, R. C., van Ommen, T. D., Siegert, M. J. 2015; 8 (4): 294-298

    View details for DOI 10.1038/NGEO2388

    View details for Web of Science ID 000352082300020

  • Estimating Subglacial Water Geometry Using Radar Bed Echo Specularity: Application to Thwaites Glacier, West Antarctica IEEE GEOSCIENCE AND REMOTE SENSING LETTERS Schroeder, D. M., Blankenship, D. D., Raney, R. K., Grima, C. 2015; 12 (3): 443-447
  • The distribution of basal water between Antarctic subglacial lakes from radar sounding Philosophical Transactions of the Royal Society A Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., Quartini, E. 2015; 374 (2059)
  • Planetary landing-zone reconnaissance using ice-penetrating radar data: Concept validation in Antarctica PLANETARY AND SPACE SCIENCE Grima, C., Schroeder, D. M., Blankenship, D. D., Young, D. A. 2014; 103: 191-204
  • Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica GEOPHYSICAL RESEARCH LETTERS Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., Anderson, J. B. 2014; 41 (20): 7200-7208
  • Surface slope control on firn density at Thwaites Glacier, West Antarctica: Results from airborne radar sounding GEOPHYSICAL RESEARCH LETTERS Grima, C., Blankenship, D. D., Young, D. A., Schroeder, D. M. 2014; 41 (19): 6787-6794
  • Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Schroeder, D. M., Blankenship, D. D., Young, D. A., Quartini, E. 2014; 111 (25): 9070-9072

    Abstract

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼ 114 ± 10 mW/m(2) with areas of high flux exceeding 200 mW/m(2) consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site.

    View details for DOI 10.1073/pnas.1405184s11

    View details for Web of Science ID 000337760600029

    View details for PubMedID 24927578

  • Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica QUATERNARY SCIENCE REVIEWS Witus, A. E., Branecky, C. M., Anderson, J. B., Szczucinski, W., Schroeder, D. M., Blankenship, D. D., Jakobsson, M. 2014; 85: 99-118
  • Evidence for a water system transition beneath Thwaites Glacier, West Antarctica PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Schroeder, D. M., Blankenship, D. D., Young, D. A. 2013; 110 (30): 12225-12228

    Abstract

    Thwaites Glacier is one of the largest, most rapidly changing glaciers on Earth, and its landward-sloping bed reaches the interior of the marine West Antarctic Ice Sheet, which impounds enough ice to yield meters of sea-level rise. Marine ice sheets with landward-sloping beds have a potentially unstable configuration in which acceleration can initiate or modulate grounding-line retreat and ice loss. Subglacial water has been observed and theorized to accelerate the flow of overlying ice dependent on whether it is hydrologically distributed or concentrated. However, the subglacial water systems of Thwaites Glacier and their control on ice flow have not been characterized by geophysical analysis. The only practical means of observing these water systems is airborne ice-penetrating radar, but existing radar analysis approaches cannot discriminate between their dynamically critical states. We use the angular distribution of energy in radar bed echoes to characterize both the extent and hydrologic state of subglacial water systems across Thwaites Glacier. We validate this approach with radar imaging, showing that substantial water volumes are ponding in a system of distributed canals upstream of a bedrock ridge that is breached and bordered by a system of concentrated channels. The transition between these systems occurs with increasing surface slope, melt-water flux, and basal shear stress. This indicates a feedback between the subglacial water system and overlying ice dynamics, which raises the possibility that subglacial water could trigger or facilitate a grounding-line retreat in Thwaites Glacier capable of spreading into the interior of the West Antarctic Ice Sheet.

    View details for DOI 10.1073/pnas.1302828110

    View details for Web of Science ID 000322112300031

    View details for PubMedID 23836631

  • Weak bed control of the eastern shear margin of Thwaites Glacier, West Antarctica JOURNAL OF GLACIOLOGY MacGregor, J. A., Catania, G. A., Conway, H., Schroeder, D. M., Joughin, I., Young, D. A., Kempf, S. D., Blankenship, D. D. 2013; 59 (217): 900-912
  • Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Wright, A. P., Young, D. A., Roberts, J. L., Schroeder, D. M., Bamber, J. L., Dowdeswell, J. A., Young, N. W., Le Brocq, A. M., Warner, R. C., Payne, A. J., Blankenship, D. D., van Ommen, T. D., Siegert, M. J. 2012; 117
  • A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes NATURE Young, D. A., Wright, A. P., Roberts, J. L., Warner, R. C., Young, N. W., Greenbaum, J. S., Schroeder, D. M., Holt, J. W., Sugden, D. E., Blankenship, D. D., Van Ommen, T. D., Siegert, M. J. 2011; 474 (7349): 72-75

    Abstract

    The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

    View details for DOI 10.1038/nature10114

    View details for Web of Science ID 000291156700039

    View details for PubMedID 21637255