Edwin Ng
Ph.D. Student in Applied Physics, admitted Autumn 2013
All Publications
-
Engineering a Kerr-Based Deterministic Cubic Phase Gate via Gaussian Operations
Physical Review Letters
2020; 124: 240503
View details for DOI 10.1103/PhysRevLett.124.240503
-
Adiabatic Fock-state-generation scheme using Kerr nonlinearity
PHYSICAL REVIEW A
2019; 100 (3)
View details for DOI 10.1103/PhysRevA.100.033822
View details for Web of Science ID 000486622300013
-
Experimental investigation of performance differences between coherent Ising machines and a quantum annealer.
Science advances
2019; 5 (5): eaau0823
Abstract
Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(-alphaDW N 2)] relative to CIMs [exp(-alphaCIM N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal-annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.
View details for DOI 10.1126/sciadv.aau0823
View details for PubMedID 31139743
-
Scanning microwave imaging of optically patterned Ge2Sb2Te5
APPLIED PHYSICS LETTERS
2019; 114 (9)
View details for DOI 10.1063/1.5052018
View details for Web of Science ID 000460820600042