All Publications


  • High-Q nanophotonics: sculpting wavefronts with slow light NANOPHOTONICS Barton, D., Hu, J., Dixon, J., Klopfer, E., Dagli, S., Lawrence, M., Dionne, J. 2021; 10 (1): 83–88
  • Dynamic Focusing with High-Quality-Factor Metalenses. Nano letters Klopfer, E. n., Lawrence, M. n., Barton, D. R., Dixon, J. n., Dionne, J. A. 2020

    Abstract

    Metasurface lenses provide an ultrathin platform in which to focus light, but weak light-matter interactions limit their dynamic tunability. Here we design submicron-thick, ultrahigh quality factor (high-Q) metalenses that enable dynamic modulation of the focal length and intensity. Using full-field simulations, we show that quality factors exceeding 5000 can be generated by including subtle, periodic perturbations within the constituent Si nanoantennas. Such high-Q resonances enable lens modulation based on the nonlinear Kerr effect, with focal lengths varying from 4 to 6.5 μm and focal intensities decreasing by half as input intensity increases from 0.1 to 1 mW/μm2. We also show how multiple high-Q resonances can be embedded in the lens response through judicious placement of the perturbations. Our high-Q lens design, with quality factors 2 orders of magnitude higher than existing lens designs, provides a foundation for reconfigurable, multiplexed, and hyperspectral metasurface imaging platforms.

    View details for DOI 10.1021/acs.nanolett.0c01359

    View details for PubMedID 32497434