Bio


Dr. Elizabeth Corson is a TomKat Center Postdoctoral Fellow in Sustainable Energy researching electrochemical nitrate reduction. She was a NSF Graduate Research Fellow at the University of California, Berkeley where she completed her Ph.D. in Chemical Engineering with Prof. Bryan McCloskey. She conducted her dissertation research on plasmon-enhanced electrochemical carbon dioxide reduction at the Joint Center for Artificial Photosynthesis (JCAP) at Lawrence Berkeley National Lab. Originally from Iowa, Elizabeth received her B.S. in Chemical Engineering from the Illinois Institute of Technology in Chicago.

Stanford Advisors


All Publications


  • Effect of pressure and temperature on carbon dioxide reduction at a plasmonically active silver cathode ELECTROCHIMICA ACTA Corson, E. R., Creel, E. B., Kostecki, R., Urban, J. J., McCloskey, B. D. 2021; 374
  • Reduction of carbon dioxide at a plasmonically active copper-silver cathode CHEMICAL COMMUNICATIONS Corson, E. R., Subramani, A., Cooper, J. K., Kostecki, R., Urban, J. J., McCloskey, B. D. 2020; 56 (69): 9970–73

    Abstract

    Electrochemically deposited copper nanostructures were coated with silver to create a plasmonically active cathode for carbon dioxide (CO2) reduction. Illumination with 365 nm light, close to the peak plasmon resonance of silver, selectively enhanced 5 of the 14 typically observed copper CO2 reduction products while simultaneously suppressing hydrogen evolution. At low overpotentials, carbon monoxide was promoted in the light and at high overpotentials ethylene, methane, formate, and allyl alcohol were enhanced upon illumination; generally C1 products and C2/C3 products containing a double carbon bond were selectively promoted under illumination. Temperature-dependent product analysis in the dark showed that local heating is not the cause of these selectivity changes. While the exact plasmonic mechanism is still unknown, these results demonstrate the potential for enhancing CO2 reduction selectivity at copper electrodes using plasmonics.

    View details for DOI 10.1039/d0cc03215h

    View details for Web of Science ID 000563972400005

    View details for PubMedID 32852004

  • In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Corson, E. R., Kas, R., Kostecki, R., Urban, J. J., Smith, W. A., McCloskey, B. D., Kortlever, R. 2020; 142 (27): 11750–62

    Abstract

    Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light.

    View details for DOI 10.1021/jacs.0c01953

    View details for Web of Science ID 000550639000019

    View details for PubMedID 32469508

  • Important Considerations in Plasmon-Enhanced Electrochemical Conversion at Voltage-Biased Electrodes ISCIENCE Corson, E. R., Creel, E. B., Kostecki, R., McCloskey, B. D., Urban, J. J. 2020; 23 (3): 100911

    Abstract

    In this perspective we compare plasmon-enhanced electrochemical conversion (PEEC) with photoelectrochemistry (PEC). PEEC is the oxidation or reduction of a reactant at the illuminated surface of a plasmonic metal (or other conductive material) while a potential bias is applied. PEC uses solar light to generate photoexcited electron-hole pairs to drive an electrochemical reaction at a biased or unbiased semiconductor photoelectrode. The mechanism of photoexcitation of charge carriers is different between PEEC and PEC. Here we explore how this difference affects the response of PEEC and PEC systems to changes in light, temperature, and surface morphology of the photoelectrode.

    View details for DOI 10.1016/j.isci.2020.100911

    View details for Web of Science ID 000528358900034

    View details for PubMedID 32113155

    View details for PubMedCentralID PMC7047194

  • Directing Selectivity of Electrochemical Carbon Dioxide Reduction Using Plasmonics ACS ENERGY LETTERS Creel, E. B., Corson, E. R., Eichhorn, J., Kostecki, R., Urban, J. J., McCloskey, B. D. 2019; 4 (5): 1098–1105
  • Surface-Plasmon-Assisted Photoelectrochemical Reduction of CO2 and NO3- on Nanostructured Silver Electrodes ADVANCED ENERGY MATERIALS Kim, Y., Creel, E. B., Corson, E. R., McCloskey, B. D., Urban, J. J., Kostecki, R. 2018; 8 (22)
  • A temperature-controlled photoelectrochemical cell for quantitative product analysis REVIEW OF SCIENTIFIC INSTRUMENTS Corson, E. R., Creel, E. B., Kim, Y., Urban, J. J., Kostecki, R., McCloskey, B. D. 2018; 89 (5): 055112

    Abstract

    In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.

    View details for DOI 10.1063/1.5024802

    View details for Web of Science ID 000433962700085

    View details for PubMedID 29864888

  • CO2 capture by sub-ambient membrane operation Hasse, D., Kulkarni, S., Sanders, E., Corson, E., Tranier, J., Dixon, T., Yamaji, K. ELSEVIER SCIENCE BV. 2013: 993–1003