Emily Been
Ph.D. Student in Physics, admitted Winter 2019
Masters Student in Materials Science and Engineering, admitted Autumn 2018
All Publications
-
Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy
MATTER
2022; 5 (6)
View details for DOI 10.1016/j.matt.2022.01.020
View details for Web of Science ID 000810939100001
-
Anisotropy of the magnetic and transport properties of EuZn2As2
PHYSICAL REVIEW B
2022; 105 (16)
View details for DOI 10.1103/PhysRevB.105.165122
View details for Web of Science ID 000832845000002
-
On the Nature of Valence Charge and Spin Excitations via Multi-Orbital Hubbard Models for Infinite-Layer Nickelates
FRONTIERS IN PHYSICS
2022; 10
View details for DOI 10.3389/fphy.2022.836959
View details for Web of Science ID 000776236900001
-
Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2021; 118 (36)
View details for DOI 10.1073/pnas.2101817118|1of7
View details for Web of Science ID 000705126700008
-
Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst.
Proceedings of the National Academy of Sciences of the United States of America
2021; 118 (36)
Abstract
The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited, at present, by the sluggish water oxidation reaction. Single-atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms toward designing high-performance water oxidation catalysts. Here, using operando X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir5.3+) in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environment of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir0.1/Ni9Fe SAC) via a unique in situ cryogenic-photochemical reduction method that delivers an overpotential of 183 mV at 10 mA cm- 2 and retains its performance following 100 h of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO2 catalysts. These findings open the avenue toward an atomic-level understanding of the oxygen evolution of catalytic centers under in operando conditions.
View details for DOI 10.1073/pnas.2101817118
View details for PubMedID 34465618
-
Electronic Structure Trends Across the Rare-Earth Series in Superconducting Infinite-Layer Nickelates
PHYSICAL REVIEW X
2021; 11 (1)
View details for DOI 10.1103/PhysRevX.11.011050
View details for Web of Science ID 000627595600002