All Publications


  • Sex-specific genetic effects across biomarkers. European journal of human genetics : EJHG Flynn, E., Tanigawa, Y., Rodriguez, F., Altman, R. B., Sinnott-Armstrong, N., Rivas, M. A. 2020

    Abstract

    Sex differences have been shown in laboratory biomarkers; however, the extent to which this is due to genetics is unknown. In this study, we infer sex-specific genetic parameters (heritability and genetic correlation) across 33 quantitative biomarker traits in 181,064 females and 156,135 males from the UK Biobank study. We apply a Bayesian Mixture Model, Sex Effects Mixture Model(SEMM), to Genome-wide Association Study summary statistics in order to (1) estimate the contributions of sex to the genetic variance of these biomarkers and (2) identify variants whose statistical association with these traits is sex-specific. We find that the genetics of most biomarker traits are shared between males and females, with the notable exception of testosterone, where we identify 119 female and 445 male-specific variants. These include protein-altering variants in steroid hormone production genes (POR, UGT2B7). Using the sex-specific variants as genetic instruments for Mendelian randomization, we find evidence for causal links between testosterone levels and height, body mass index, waist and hip circumference, and type 2 diabetes. We also show that sex-specific polygenic risk score models for testosterone outperform a combined model. Overall, these results demonstrate that while sex has a limited role in the genetics of most biomarker traits, sex plays an important role in testosterone genetics.

    View details for DOI 10.1038/s41431-020-00712-w

    View details for PubMedID 32873964

  • Matching Multiple Rigid Domain Decompositions of Proteins IEEE TRANSACTIONS ON NANOBIOSCIENCE Flynn, E., Streinu, I. 2017; 16 (2): 81-90

    Abstract

    We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups, that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple Nucleic Magnetic Resonance (NMR) models of the same protein. Implemented into the KINematics And RIgidity (KINARI) web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of Protein Data Bank proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein's slow motions near the native state.

    View details for DOI 10.1109/TNB.2017.2660538

    View details for Web of Science ID 000399943600002

    View details for PubMedID 28141528

  • Consistent Visualization of Multiple Rigid Domain Decompositions of Proteins Flynn, E., Streinu, I., Bourgeois, A., Skums, P., Wan, Zelikovsky, A. SPRINGER INT PUBLISHING AG. 2016: 151–62