Professional Education


  • Doctor of Philosophy, Jilin University (2015)

Current Research and Scholarly Interests


I mainly focus on the electrical transport and optical properties of low-dimensional materials at extreme conditions, such as ultra-high pressure, low temperature, high magnetic-fields.

All Publications


  • Conduction transition and electronic conductivity enhancement of cesium azide by pressure-directed grain boundary engineering JOURNAL OF MATERIALS CHEMISTRY C Wang, Q., Wang, X., Li, J., Qin, T., Sang, D., Liu, J., Ke, F., Wang, X., Li, Y., Liu, C. 2021

    View details for DOI 10.1039/d1tc00382h

    View details for Web of Science ID 000637073800001

  • Superionic iron oxide-hydroxide in Earth's deep mantle NATURE GEOSCIENCE Hou, M., He, Y., Jang, B., Sun, S., Zhuang, Y., Deng, L., Tang, R., Chen, J., Ke, F., Meng, Y., Prakapenka, V. B., Chen, B., Shim, J., Liu, J., Kim, D., Hu, Q., Pickard, C. J., Needs, R. J., Mao, H. 2021; 14 (3): 174-+
  • Pressure-induced excimer formation and fluorescence enhancement of an anthracene derivative JOURNAL OF MATERIALS CHEMISTRY C Dai, Y., Liu, H., Geng, T., Ke, F., Niu, S., Wang, K., Qi, Y., Zou, B., Yang, B., Mao, W. L., Lin, Y. 2021; 9 (3): 934–38

    View details for DOI 10.1039/d0tc04677a

    View details for Web of Science ID 000612717600017

  • Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nature communications Ke, F. n., Wang, C. n., Jia, C. n., Wolf, N. R., Yan, J. n., Niu, S. n., Devereaux, T. P., Karunadasa, H. I., Mao, W. L., Lin, Y. n. 2021; 12 (1): 461

    Abstract

    Functional CsPbI3 perovskite phases are not stable at ambient conditions and spontaneously convert to a non-perovskite δ phase, limiting their applications as solar cell materials. We demonstrate the preservation of a black CsPbI3 perovskite structure to room temperature by subjecting the δ phase to pressures of 0.1 - 0.6 GPa followed by heating and rapid cooling. Synchrotron X-ray diffraction and Raman spectroscopy indicate that this perovskite phase is consistent with orthorhombic γ-CsPbI3. Once formed, γ-CsPbI3 could be then retained after releasing pressure to ambient conditions and shows substantial stability at 35% relative humidity. First-principles density functional theory calculations indicate that compression directs the out-of-phase and in-phase tilt between the [PbI6]4- octahedra which in turn tune the energy difference between δ- and γ-CsPbI3, leading to the preservation of γ-CsPbI3. Here, we present a high-pressure strategy for manipulating the (meta)stability of halide perovskites for the synthesis of desirable phases with enhanced materials functionality.

    View details for DOI 10.1038/s41467-020-20745-5

    View details for PubMedID 33469021

  • Synthesis of Atomically Thin Hexagonal Diamond with Compression. Nano letters Ke, F., Zhang, L., Chen, Y., Yin, K., Wang, C., Tzeng, Y., Lin, Y., Dong, H., Liu, Z., Tse, J. S., Mao, W. L., Wu, J., Chen, B. 2020

    Abstract

    Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to 1.0 GPa. Theoretical calculations indicate that a (-2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices.

    View details for DOI 10.1021/acs.nanolett.0c01872

    View details for PubMedID 32578991

  • Negative Differential Resistance of n-ZnO Nanorods/p-degenerated Diamond Heterojunction at High Temperatures. Frontiers in chemistry Sang, D. n., Liu, J. n., Wang, X. n., Zhang, D. n., Ke, F. n., Hu, H. n., Wang, W. n., Zhang, B. n., Li, H. n., Liu, B. n., Wang, Q. n. 2020; 8: 531

    Abstract

    In the present study, an n-ZnO nanorods (NRs)/p-degenerated diamond tunneling diode was investigated with regards to its temperature-dependent negative differential resistance (NDR) properties and carrier tunneling injection behaviors. The fabricated heterojunction demonstrated NDR phenomena at 20 and 80°C. However, these effects disappeared followed by the occurrence of rectification characteristics at 120°C. At higher temperatures, the forward current was increased, and the turn-on voltage and peak-to-valley current ratio (PVCR) were reduced. In addition, the underlying mechanisms of carrier tunneling conduction at different temperature and bias voltages were analyzed through schematic energy band diagrams and semiconductor theoretical models. High-temperature NDR properties of the n-ZnO NRs/p-degenerated diamond heterojunction can extend the applications of resistive switching and resonant tunneling diodes, especially in high-temperature, and high-power environments.

    View details for DOI 10.3389/fchem.2020.00531

    View details for PubMedID 32760696

    View details for PubMedCentralID PMC7374258

  • Tuning Optical and Electronic Properties in Low-Toxicity Organic-Inorganic Hybrid (CH3NH3)(3)Bi2I9 under High Pressure JOURNAL OF PHYSICAL CHEMISTRY LETTERS Zhang, L., Liu, C., Lin, Y., Wang, K., Ke, F., Liu, C., Mao, W. L., Zou, B. 2019; 10 (8): 1676–83
  • Tuning Optical and Electronic Properties in Low-Toxicity Organic-Inorganic Hybrid (CH3NH3)3Bi2I9 under High Pressure. The journal of physical chemistry letters Zhang, L., Liu, C., Lin, Y., Wang, K., Ke, F., Liu, C., Mao, W. L., Zou, B. 2019: 1676–83

    Abstract

    Low-toxicity, air-stable methylammonium bismuth iodide (CH3NH3)3Bi2I9 has been proposed as a candidate to replace lead-based perovskites as highly efficient light absorbers for photovoltaic devices. Here, we investigated the effect of pressure on the optoelectronic properties and crystal structure of (CH3NH3)3Bi2I9 up to 65 GPa at room temperature. We achieved impressive photoluminescence enhancement and band gap narrowing over a moderate pressure range. Dramatic piezochromism from transparent red to opaque black was observed in a single crystal sample. A structural phase transition from hexagonal P63/ mmc to monoclinic P21 at 5.0 GPa and completely reversible amorphization at 29.1 GPa were determined by in situ synchrotron X-ray diffraction. Moreover, the dynamically disordered MA+ organic cations in the hexagonal phase became orientationally ordered upon entering into the monoclinic phase, followed by static disorder upon amorphization. The striking enhancement of conductivity and metallization under high pressure indicate wholly new electronic properties.

    View details for PubMedID 30905153

  • Phase transformations of Al-bearing high-entropy alloys AlxCoCrFeNi (x=0, 0.1, 0.3, 0.75, 1.5) at high pressure APPLIED PHYSICS LETTERS Wang, C., Tracy, C. L., Park, S., Liu, J., Ke, F., Zhang, F., Yang, T., Xia, S., Li, C., Wang, Y., Zhang, Y., Mao, W. L., Ewing, R. C. 2019; 114 (9)

    View details for DOI 10.1063/1.5079868

    View details for Web of Science ID 000460820600017

  • Mechanosensitive upconverting nanoparticles for visualizing mechanical forces in vivo Lay, A., Siefe, C., Fischer, S., Mehlenbacher, R., Das, A., Nekimken, A., Ke, F., Mao, W., Pruitt, B., Cohen, B., Alivisatos, P., Goodman, M., Dionne, J. AMER CHEMICAL SOC. 2018
  • Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core-Shell Nanoparticles. Nano letters Lay, A. n., Siefe, C. n., Fischer, S. n., Mehlenbacher, R. D., Ke, F. n., Mao, W. L., Alivisatos, A. P., Goodman, M. B., Dionne, J. A. 2018

    Abstract

    Lanthanide-doped nanoparticles are an emerging class of optical sensors, exhibiting sharp emission peaks, high signal-to-noise ratio, photostability, and a ratiometric color response to stress. The same centrosymmetric crystal field environment that allows for high mechanosensitivity in the cubic-phase (α), however, contributes to low upconversion quantum yield (UCQY). In this work, we engineer brighter mechanosensitive upconverters using a core-shell geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with an optically inert surface passivation layer of ∼4.5 nm thickness. Using different shell materials, including NaGdF4, NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles' imaging and sensing properties. All core-shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled hexagonal-phase (β) nanoparticles. Additionally, strain at the core-shell interface can tune mechanosensitivity. In particular, the compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core's mechano-sensing capabilities and further, promotes core-shell cubic-phase nanoparticles as upcoming in vivo and in situ optical sensors.

    View details for PubMedID 29927609