Professional Education


  • Doctor of Philosophy, Ecole Polytechnique Federale Lausanne (2014)
  • Diplom, University of Bonn (2009)

Stanford Advisors


All Publications


  • Hebbian plasticity requires compensatory processes on multiple timescales PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Zenke, F., Gerstner, W. 2017; 372 (1715)

    Abstract

    We review a body of theoretical and experimental research on Hebbian and homeostatic plasticity, starting from a puzzling observation: while homeostasis of synapses found in experiments is a slow compensatory process, most mathematical models of synaptic plasticity use rapid compensatory processes (RCPs). Even worse, with the slow homeostatic plasticity reported in experiments, simulations of existing plasticity models cannot maintain network stability unless further control mechanisms are implemented. To solve this paradox, we suggest that in addition to slow forms of homeostatic plasticity there are RCPs which stabilize synaptic plasticity on short timescales. These rapid processes may include heterosynaptic depression triggered by episodes of high postsynaptic firing rate. While slower forms of homeostatic plasticity are not sufficient to stabilize Hebbian plasticity, they are important for fine-tuning neural circuits. Taken together we suggest that learning and memory rely on an intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure stability and plasticity of neural circuits.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.

    View details for DOI 10.1098/rstb.2016.0259

    View details for Web of Science ID 000393410000012

    View details for PubMedID 28093557

  • The temporal paradox of Hebbian learning and homeostatic plasticity. Current opinion in neurobiology Zenke, F., Gerstner, W., Ganguli, S. 2017; 43: 166–76

    Abstract

    Hebbian plasticity, a synaptic mechanism which detects and amplifies co-activity between neurons, is considered a key ingredient underlying learning and memory in the brain. However, Hebbian plasticity alone is unstable, leading to runaway neuronal activity, and therefore requires stabilization by additional compensatory processes. Traditionally, a diversity of homeostatic plasticity phenomena found in neural circuits is thought to play this role. However, recent modelling work suggests that the slow evolution of homeostatic plasticity, as observed in experiments, is insufficient to prevent instabilities originating from Hebbian plasticity. To remedy this situation, we suggest that homeostatic plasticity is complemented by additional rapid compensatory processes, which rapidly stabilize neuronal activity on short timescales.

    View details for DOI 10.1016/j.conb.2017.03.015

    View details for PubMedID 28431369