Education & Certifications

  • Bachelor of Arts, Princeton University, Physics (2015)


  • 2018 Spring - OBGYN 300A Obstetrics and Gynecology Core Clerkship
  • 2018 Spring - OTOHNS 336A Subinternship in Otolaryngology/Head & Neck Surgery
  • 2018 Spring - RAD 306A Neuroradiology Clerkship
  • 2018 Winter - SURG 300A Surgery Core Clerkship
  • 2017 Autumn - MED 300A Internal Medicine Core Clerkship
  • 2017 Autumn - PEDS 300A Pediatrics Core Clerkship
  • 2017 Summer - NENS 301A Neurology Core Clerkship
  • 2017 Summer - PEDS 300A Pediatrics Core Clerkship
  • 2017 Summer - PSYC 300A Psychiatry Core Clerkship

All Publications

  • Thyroid cancer risk in airline cockpit and cabin crew: a meta-analysis Cancers of the Head & Neck Liu, G. S., Cook, A., Richardson, M., Vail, D., Holsinger, F. C., Oakley-Girvan, I. 2018; 3 (7)
  • The effect of antibiotics on protein diffusion in the Escherichia coli cytoplasmic membrane PLOS ONE Liu, G. S., Bratton, B. P., Gital, Z., Shaevitz, J. W. 2017; 12 (10): e0185810


    Accumulating evidence suggests that molecular motors contribute to the apparent diffusion of molecules in cells. However, current literature lacks evidence for an active process that drives diffusive-like motion in the bacterial membrane. One possible mechanism is cell wall synthesis, which involves the movement of protein complexes in the cell membrane circumferentially around the cell envelope and may generate currents in the lipid bilayer that advectively transport other transmembrane proteins. We test this hypothesis in Escherichia coli using drug treatments that slow cell wall synthesis and measure their effect on the diffusion of the transmembrane protein mannitol permease using fluorescence recovery after photobleaching. We found no clear decrease in diffusion in response to vancomycin and no decrease in response to mecillinam treatment. These results suggest that cell wall synthesis is not an active contributor to mobility in the cytoplasmic membrane.

    View details for DOI 10.1371/journal.pone.0185810

    View details for Web of Science ID 000412163100047

    View details for PubMedID 28977034

    View details for PubMedCentralID PMC5627921

  • ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography BIOMEDICAL OPTICS EXPRESS Liu, G. S., Zhu, M. H., Kim, J., Raphael, P., Applegate, B. E., Oghalai, J. S. 2017; 8 (10): 4579–94


    Detection of endolymphatic hydrops is important for diagnosing Meniere's disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification.

    View details for DOI 10.1364/BOE.8.004579

    View details for Web of Science ID 000412052000021

    View details for PubMedID 29082086

    View details for PubMedCentralID PMC5654801

  • Computer-aided detection and quantification of endolymphatic hydrops within the mouse cochlea in vivo using optical coherence tomography JOURNAL OF BIOMEDICAL OPTICS Liu, G. S., Kim, J., Applegate, B. E., Oghalai, J. S. 2017; 22 (7): 76002


    Diseases that cause hearing loss and/or vertigo in humans such as Meniere’s disease are often studied using animal models. The volume of endolymph within the inner ear varies with these diseases. Here, we used a mouse model of increased endolymph volume, endolymphatic hydrops, to develop a computer-aided objective approach to measure endolymph volume from images collected

    View details for DOI 10.1117/1.JBO.22.7.076002

    View details for Web of Science ID 000407367200008

    View details for PubMedID 28687821

  • Explaining the Coincidence Rule for Estimating Respiratory Compensation in Metabolic Acid–Base Disorders Annals of Internal Medicine Liu, G. S., Bhalla, V. 2017; 166 (8): 610

    View details for DOI 10.7326/L16-0470

  • Superresolution microscope image reconstruction by spatiotemporal object decomposition and association: application in resolving t-tubule structure in skeletal muscle OPTICS EXPRESS Sun, M., Huang, J., Bunyak, F., Gumpper, K., De, G., Sermersheim, M., Liu, G., Lin, P., Palaniappan, K., Ma, J. 2014; 22 (10): 12160-12176


    One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.

    View details for DOI 10.1364/OE.22.012160

    View details for Web of Science ID 000336957700078

    View details for PubMedID 24921337

    View details for PubMedCentralID PMC4162352

  • IS THE BEDSIDE TIMED VIBRATION TEST RELIABLE? MUSCLE & NERVE Botez, S. A., Liu, G., Logigian, E., Herrmann, D. N. 2009; 39 (2): 221-223


    The timed vibration test (TVT) is an easy-to-perform bedside sensory test; however, its reliability is not well established at sites commonly used for clinical testing. We evaluated intra- and interrater reliability of the TVT in a healthy control cohort of 25 adult volunteers and assessed the influence of neurologic training on TVT. Intrarater [intraclass correlation coefficient (ICC) range 0.79-0.92] and interrater (ICC range 0.0.82-0.95) reliability of TVT was high at different sites, which suggests that TVT is a reliable bedside examination when performed using a standardized protocol.

    View details for DOI 10.1002/mus.21143

    View details for Web of Science ID 000262837700012

    View details for PubMedID 19145659